Zadatak 02 - Krive u prostoru

Zadatak 02 - Krive u prostoru

 
Zadatak 02 - Krive u prostoru
Dienstag, 24. Juni 2014, 12:41

Parametarski definisati i grafički prikazati krive u prostoru. Za ovaj zadatak možete koristiti sledeće programe:

3D Grapher3D Math Explorer , Function Grapher (File, new, 3D graph...), Fun3D (Edit, New U Curve...)

Možete koristiti i druge programe koji podržavaju grafičko predstavljanje parametarski definisanih linija u prostoru. U tekstualnom delu, uz izabrane parametre navesti i ime pragrama kojim je prikaz dobijen.

 Ova vežba je aktuelna do 6. maja 2014.

Nutzerbild von Anka Mirkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Anka Mirkovic - Sonntag, 20. April 2014, 17:50
 

Program: 3D Grapher

1. Coordinate: Spherical

Function:

a(u,v,t)=v*sin(u))*4

b(u,v,t)=u*(sin(v))*3

R(u,v,t)=u*3+v*3

Domain of variables:

Min U:-1; Max U:1; Steps: 70

MinV:-1; Max V:1; Steps: 70

2.Coordinate: Cylindrical

Function:

a(u,v,t)=u+v+t

R(u,v,t)=3*sin(7*u)

Z(u,v,t)=3*cos(7*u)

Domain of variables:

Min U:-10; Max U:10; Steps:30

MinV:-10; Max V:10; Steps: 30

 


Nutzerbild von Stefan Stojcic
Odgovor: Zadatak 02 - Krive u prostoru
von Stefan Stojcic - Sonntag, 4. Mai 2014, 22:29
 

Program: 3D Grapher



Nutzerbild von Ivan Vaci
Odgovor: Zadatak 02 - Krive u prostoru
von Ivan Vaci - Sonntag, 20. April 2014, 18:26
 

3D Grapher


Nutzerbild von Uros Markovic
Odgovor: Zadatak 02 - Krive u prostoru
von Uros Markovic - Montag, 5. Mai 2014, 20:55
 

Coordinates: Cartesian

X (u,v,t) = 3*v*cos(2*u)
 
Y (u,v,t) = 2*v* sin(u)*4

Z (u,v,t) = 2*v

Domain of variables:

Min U : -10 Max U : 10 Steps: 70

Min V : -10 Max V : 10 Steps: 70

Coordinates: Cartesian

X (u,v,t) = 2*v* sin(u)*4
 
Y (u,v,t) = 3*v*cos(2*u)

Z (u,v,t) = 2*v

Domain of variables:

Min U : -10 Max U : 10 Steps: 90

Min V : -10 Max V : 10 Steps: 90


Nutzerbild von ersid mandija
Odgovor: Zadatak 02 - Krive u prostoru
von ersid mandija - Samstag, 24. Mai 2014, 20:44
 

Coordinates: Cylindrical

a(u,v,t)=5*sin(2*u)-cos(2*u) R(u,v,t)=5*sin(2*u)-cos(2*u) Z(u,v,t)=u

a(u,v,t)=5*sin(2*u)-cos(2*u) R(u,v,t)=5*sin(2*u)-cos(2*u)+3 Z(u,v,t)=u

a(u,v,t)=5*sin(2*u)-cos(2*u) R(u,v,t)=5*sin(2*u)-cos(2*u)+5 Z(u,v,t)=u

Min U:-5 Max U:5 Steps:50 Min V:-5 Max V:5 Steps:50

 


Nutzerbild von Nataša Matić
Odgovor: Zadatak 02 - Krive u prostoru
von Nataša Matić - Sonntag, 20. April 2014, 19:43
 

Korišćeni program - 3D Grapher

Coordinates: Cartesian

X (u,v,t) = 3*v*cos(2*u)
 
Y (u,v,t) = 2*v* sin(u)*3

Z (u,v,t) = 2*v

Domain of variables:

Min U : -10 Max U : 10 Steps: 60

Min V : -10 Max V : 10 Steps: 60


Nutzerbild von Luka Buncic
Odgovor: Zadatak 02 - Krive u prostoru
von Luka Buncic - Dienstag, 22. April 2014, 23:00
 

3d GRAPHER

Spherical

a(u,v,t)= cos(u)

R(u,v,t)=cos(u)+v

Z(u,v,t)=0.5*u

Min U: 15      Max U: 5      Steps: 20

Min V: 1     Max V: 10            Steps:100


Nutzerbild von Dina Jovanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Dina Jovanovic - Sonntag, 20. April 2014, 21:48
 

3D Grapher

Coordinates: Cartesian

Podaci su na slici za X,Y i Z koordinate.

MinU: -10, MaxU: 10, Steps: 111



Nutzerbild von momir nikolic
Odgovor: Zadatak 02 - Krive u prostoru
von momir nikolic - Sonntag, 20. April 2014, 22:54
 

Program: 3D Grapher

Coordinates: Spherical

a(u,v,t)= v*(sin(u))^3

b(u,v,t)= u*(sin(v))^2

R(u,v,t)= u^2+v^3

Min U: -2  Max U: 2  Steps: 70

Min V: -2  Max V: 2  Steps: 70


Nutzerbild von Minja Radenković
Odgovor: Zadatak 02 - Krive u prostoru
von Minja Radenković - Montag, 21. April 2014, 12:41
 

program: 3d grapher

parametri:
x= 0.5*cos(u); y= 0.5*u; z= 0.5*sin(u); 
x= cos(u); y= u; z= sin(u);
x= 1.5*cos(u); y= 1.5*u; z= 1.5*sin(u);
x= 2*cos(u); y= 2*u; z= 2*sin(u);
x= 2.5*cos(u); y= 2.5*u; z= 2.5*sin(u);
x= 3*cos(u); y= 3*u; z= 3*sin(u);
x= 3.5*cos(u); y= 3.5*u; z= 3.5*sin(u);
x= 4*cos(u); y= 4*u; z= 4*sin(u);
x= 4.5*cos(u); y= 4.5*u; z= 4.5*sin(u);
x= 5*cos(u); y= 5*u; z= 5*sin(u);
x= 5.5*cos(u); y= 5.5*u; z= 5.5*sin(u);
x= 6*cos(u); y= 6*u; z= 6*sin(u);
x= 6.5*cos(u); y= 6.5*u; z= 6.5*sin(u);
x= 7*cos(u); y= 7*u; z= 7*sin(u);
x=7.5*cos(u); y=7.5*u; z=7.5*sin(u);
x=8*cos(u);; y=8*u; z=8*sin(u);
x=8.5*cos(u); y=8.5*u; z=8.5*sin(u)

granice:
minU= -10; maxU:10; steps: 600


Nutzerbild von Jovan Kolaric
Odgovor: Zadatak 02 - Krive u prostoru
von Jovan Kolaric - Dienstag, 6. Mai 2014, 12:56
 

 

 


Nutzerbild von Marko Riboskic
Odgovor: Zadatak 02 - Krive u prostoru
von Marko Riboskic - Montag, 21. April 2014, 16:41
 

3d grapher

Spherical
a=u*sin(7*v*v)
b=cos(v)*v
R=sin(v)*sin(v)
U: [-10,10] (30)
V: [-10,10] (30)


Nutzerbild von Aleksandra Cirovski
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandra Cirovski - Montag, 21. April 2014, 17:06
 

3D Grapher


Nutzerbild von Bosko Milovanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Bosko Milovanovic - Montag, 21. April 2014, 17:40
 

Graficki prikazane krive u prostoru koriscenjem programa 3D Grapher.


Nutzerbild von Milica Markovic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Markovic - Montag, 21. April 2014, 17:46
 

3D Grapher

coordinates: cartesian

x=2*sin(u):y=10*v*sin(u)*1:z=7*v steps 30/45

x=3*sin(u);y=20*v*sin(u);z=7*cos(u) steps 45/60

x=2*v*cos(u);y=10*cos(u);z=10*sin(u) steps 45/45

x=3*v*cos(u);y=10*cos(u);z=10*sin(u) steps 45/45

Min U; -10   Max U; 10

Min V; -10   Max V; 10

 


Nutzerbild von Jovan Filipovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jovan Filipovic - Montag, 21. April 2014, 20:37
 

3D Grapher

X: [-10,10]

Y: [-10,10]

Z: [-10,10]

T: [0,0] (0)

Selected: New Graph (1/1)

Spherical

a=v*(sin(u))^6

b=u*(sin(v))^4

R=u^2-v^3

U: [-2.2,2.2] (100)

V: [2.2,-2.2] (100)


Nutzerbild von jovana rankovic
Odgovor: Zadatak 02 - Krive u prostoru
von jovana rankovic - Montag, 21. April 2014, 21:16
 

parametri su navedeni u grafickom prikazu.

ime programa 3d grapher



Nutzerbild von Nikola Tirnanic
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Tirnanic - Montag, 21. April 2014, 22:03
 

Program: 3D Grapher

X: [-10,10]

Y: [-10,10]

Z: [-10,10]

T: [0,0] (0)

Selected:

11 (1/1)

Spherical

a=15*cos(t)-sin(u)

b=8*cos(v)

R=7*sin(v)

U: [-2,12] (25)

V: [-2,12] (25)


Nutzerbild von Jelena Markovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Markovic - Montag, 21. April 2014, 22:47
 

Program: 3D Grapher

Coordinates: Spherical

Function:

a=v*(sin(u))^4

b=u*(sin(v))^3

R=u^3+v^3

Min U: -1 Max U: 1 Steps: 70

Min V: -1 Max V: 1 Steps: 70


Nutzerbild von Milica Stanković
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Stanković - Montag, 21. April 2014, 23:14
 

Program: 3D Grapher

Coordinates: Spherical

Function

a(u,v,t)=sin(u)

b(u,v,t)=cos(u)+v

R(u,v,t)=0.5*u

Domain of variables

Min U: -4 Max U: 8 Steps: 40

Min V: -6 Max V: 20 Steps: 40


Nutzerbild von Milovan Jekic
Odgovor: Zadatak 02 - Krive u prostoru
von Milovan Jekic - Dienstag, 22. April 2014, 00:12
 

Radjeno u programu 3D Grapher

Coordinates  -   "Cartesian"

Funkcije:

X(u,v,t)=2*v*(cos(4*u))^2

Y(u,v,t)=5*v*(sin(2*u))

Z(u,v,t)=3*v

Domen:

Min U : -2      ;     Max U: 8     ;    Steps: 50

Min V : -2      ;     Max V: 8     ;    Steps: 50


Nutzerbild von Stefan Radunovic
Odgovor: Zadatak 02 - Krive u prostoru
von Stefan Radunovic - Dienstag, 22. April 2014, 01:06
 

Coordinates-Cartesain

Name -funkcija 1

X=cos(3*t)-sin(2*u)

Y=tan(2*v)+3*cos(t)

Z=sin(3*v)-4*cos(u)

MinU=-10

MaxU=10

Steps=20

Name -Funkcija2

X=cos(4t)-sin(5*u)

Y=tan(v)+3*cos(2*v)

Z=sin(3*v)-4*cos(u)

MinU=-10

MaxU=10

Steps=20

Name -funkcija 3

X=cos(2*t)-sin(u)

Y=tan(2*v)3*cos(3v)

Z=sin(2*v)-2*cos(2*u)

Min U =-10

Max U=10

Steps=20

Name-Funkcija4

X=7*sin(3*u)-4*cos(u)

Y=2*tan(v)+4*sin(u)

Z=sin(4t)-2*cos(5t)

MinU=-10

MaxU=10

Steps=20


Nutzerbild von Mirko Milanović
Odgovor: Zadatak 02 - Krive u prostoru
von Mirko Milanović - Dienstag, 22. April 2014, 01:03
 

Program: 3D GRAPHER

Cordinates: Cartesian

Function:

X(u, v, t)=

 15*v* sin (2*u);                             15*v*sin(2*u)           10*v                                   10*v

Y(U, V, T)=

 20*v*sin(u)*3;                               20*v*sin(u)*3           15*v*sin(2*u)                      15*v*sin(2*u)

Z(u, v, t)= 

10*v;                                             10*v                         20*v*sin (u)*3                     20*v*sin (u)*3

Domain of variables:

Min U:0                                                        -10                          -10                                    0

Min V: 0                                                        -10                          -10                                    0

Max U:10                                                      0                             0                                       10

Max V: 10                                                     0                             0                                       10

Steps:600                                                     600                         500                                    500

Steps: 60                                                      60                           50                                      50

 

 


Nutzerbild von Ana Marija Veljovic
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Marija Veljovic - Dienstag, 22. April 2014, 01:08
 

*cos(u);b(u,v,t)*sin(u);R(u,v,t)=*u3

Min U/V=-aomaxU/V=10steps=250

a(u,v,t)=0,7*cos(u);b(u,v,t)=0.8sin(u);R(u,v,t)=0.01*u^3

min U/V=-10maxU/V=10steps=150

a(u,v,t)=1.1*cos(u);b(u,v,t)=0.5*sin(u);R(u,v,t)=0.01*u^3

min U/V=-1omaxU/V=10steps=150

a(u,v,t)=1.9*cos(u);b(u,v,t)=0,8*sin(u)R(u,v,t)=0.01*u^3

min U/V=-10maxU/V=10steps=150

u(u,v,t)=1,4*cos(u);b(u,v,t)=1sin(t);R(u,v,t)=-0.01*u^3

min U/V=-10maxU/V=10steps=150


Nutzerbild von Milica Radovic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Radovic - Dienstag, 22. April 2014, 02:10
 

3D Grapher

 

X: [-10,10]
Y: [-10,10]
Z: [-10,10]
T: [0,0] (0)
Selected:
New Graph (1/1)
Cartesian
X=5*u*(sin(v))
Y=3*u*(cos(v))
Z=2*u
U: [-23,23] (50)
V: [-23,23] (50)


Nutzerbild von Jovana Mihailovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jovana Mihailovic - Dienstag, 22. April 2014, 07:23
 

3D Grapher
cordinates:cylindrical
function
a(u,v,t)=u
R(u,v,t)=sin(v-u)
Z(u,v,t)=v
domain of variables
min u=-5 max u=10 steps=30
min v=-5 max v=10 steps=30


Nutzerbild von Ivana Milicevic
Odgovor: Zadatak 02 - Krive u prostoru
von Ivana Milicevic - Dienstag, 22. April 2014, 09:34
 

program: 3D grapher

Coordinates: Spherical

x(u,v,t)=0.5*cos(u);   y(u,v,t)=0.3*sin(u);   z(u,v,t)=0.01*u^3, 

min U/V: -10 maxU/V: 10 steps: 250/250

x(u,v,t)=0.5*cos(u);   y(u,v,t)=0.3*sin(u);   z(u,v,t)=0.01*u^3, 

min U/V: -10 maxU/V: 10 steps: 150/20

x(u,v,t)=0.6*cos(u);   y(u,v,t)=0.5*sin(u);   z(u,v,t)=-0.01*u^6

min U/V: -10 maxU/V: 10 steps: 150/150

x(u,v,t)=0.9*cos(u);   y(u,v,t)=0.8*sin(u);   z(u,v,t)=0.01*u^3

min U/V: -10 maxU/V: 10 steps: 150/150

x(u,v,t)=0.7*cos(u);   y(u,v,t)=0.7*sin(u);   z(u,v,t)=0.01*u^3

min U/V: -10 maxU/V: 10 steps: 150/150

x(u,v,t)=1.1*cos(u);   y(u,v,t)=0.4*sin(u);   z(u,v,t)=-0.01*u^6

min U/V: -10 maxU/V: 10 steps: 100/100

x(u,v,t)=1.1*cos(u);   y(u,v,t)=0.4*sin(u);   z(u,v,t)=-0.01*u^6

min U/V: -10 maxU/V: 10 steps: 100/100

x(u,v,t)=0.9*cos(u);   y(u,v,t)=0.2*sin(u);   z(u,v,t)=0.01*u^6

min U/V: -10 maxU/V: 10 steps: 100/100

x(u,v,t)=1.1*cos(u);   y(u,v,t)=0.6*sin(u);   z(u,v,t)=-0.01*u^6

min U/V: -10 maxU/V: 10 steps: 100/100

x(u,v,t)=1.1*cos(u);   y(u,v,t)=0.2*sin(u);   z(u,v,t)=-0.01*u^6


Nutzerbild von Jelena Zlatanović
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Zlatanović - Dienstag, 22. April 2014, 10:39
 

X: [-10,10]
Y: [-10,10]
Z: [-10,10]
T: [0,0] (0)
Cartesian
X=cos(v)
Y=cos(v)+sin(v)
Z=6
U: [-10,10] (20)
V: [-10,10] (20)

X=cos(v)*2 Y=cos(v)+sin(v)*2 Z=7

X=cos(v)*3 Y=cos(v)+sin(v)*3 Z=8

X=cos(v)*4 Y=4.2*cos(v)+sin(v)*4.2  Z=cos(v)+sin(v)*4

X=4*sin(v)-cos(v)*4  Y=4*cos(v)+sin(v)*4 Z=0.01*v^3*2

X=3.5*sin(v)-cos(v)*3.5 Y=3.5*cos(v)+sin(v)*3.5 Z=0.01*v^3*2

X=3*sin(v)-cos(v)*3 Y=3*cos(v)+sin(v)*3 Z=0.01*v^3

X=2*sin(v)-cos(v)*2  Y=2*cos(v)+sin(v)*2 Z=0.01*v^3

3D Grapher

 

 

 

 


Nutzerbild von Ivana Korica
Odgovor: Zadatak 02 - Krive u prostoru
von Ivana Korica - Dienstag, 22. April 2014, 11:11
 

X:[-10,10]          Y:[-10,10]                 Z:[-10,10]

Selected: 1ng (1/1)         Cartesian

X=2*u*(sin(3*v))          Y=3*u*(cos(v))           Z=2*u

U: [-11,10] (40)             V:[-11,10] (40)


Nutzerbild von Milutin Vukoičić
Odgovor: Zadatak 02 - Krive u prostoru
von Milutin Vukoičić - Dienstag, 22. April 2014, 14:37
 

3D Grapher

Coordinates: Cartesian

MinU: -10, MaxU: 10, Steps: 150

 



Nutzerbild von Daria Topić
Odgovor: Zadatak 02 - Krive u prostoru
von Daria Topić - Dienstag, 22. April 2014, 16:42
 

X: [-10,10]
Y: [-10,10]
Z: [-10,10]
T: [0,0] (0)
Selected:
New Graph (1/1)
Cylindrical
a=u-v
R=sin(v-u)*u
Z=v
U: [-5,10] (30)
V: [-5,10] (30)


Nutzerbild von Stefan Hadzi Arsenovic
Odgovor: Zadatak 02 - Krive u prostoru
von Stefan Hadzi Arsenovic - Mittwoch, 23. April 2014, 13:00
 

3D Grapher
Coordinates: Cartesian
MinU: -10, MaxU: 20, Steps: 110
MinV: -10, MaxV: 20, Steps: 110



Nutzerbild von Minja Pantic
Odgovor: Zadatak 02 - Krive u prostoru
von Minja Pantic - Dienstag, 22. April 2014, 17:16
 

Program: 3D Grapher

Coordinates: Spherical

a= v*sin(u)^0.8

b= u*(cos(v))^0.4

R= (u^2+v^2)^0.8

MinU: -4   MaxU: 4   Steps: 100

MinV: -4   MaxV: 4   Steps: 100

 


Nutzerbild von Dusan Glisic
Odgovor: Zadatak 02 - Krive u prostoru
von Dusan Glisic - Dienstag, 22. April 2014, 18:07
 

X:[-10,10]

Y:[-10,10]

Z:[-10,10]

T:[0,0] (0)

Cartesian

X:v*(sin(u))^3

Y:u*(sin(v))^2

Z:u^2+v^3

U:[-3,3] (70)

V: [-3,3] (70)


Nutzerbild von Ana Tomic
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Tomic - Dienstag, 22. April 2014, 18:44
 

3D grapher


Nutzerbild von Dušan Zonji
Odgovor: Zadatak 02 - Krive u prostoru
von Dušan Zonji - Dienstag, 22. April 2014, 18:54
 

Program: 3D Grapher

1. CoordinateSpherical

Function:

a(u,v,t)=cos(u)+t

b(u,v,t)=sin(u)+v

R(u,v,t)=0.1*u

Domain of variables:

Min U:-10; Max U:10; Steps: 50

MinV:-10; Max V:10; Steps: 50

 


Nutzerbild von Tara Jakšić
Odgovor: Zadatak 02 - Krive u prostoru
von Tara Jakšić - Dienstag, 22. April 2014, 19:03
 

Program:3D Grapher

Coordinates:Spherical

a(u,v,t)=v*(cos(u))^2

b(u,v,t)=3+5+sin(u)

R(u,v,t)=4+sin(v)*u

Min U=-3; max U=4; Steps=70

Min V=-3; max V=4; Steps=70


Nutzerbild von Aleksandra Radovic
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandra Radovic - Dienstag, 22. April 2014, 19:24
 

Program: 3D Grapher

Coordinates: cartesian

X(u,v,t)= 4*cos(v)+sin(u); Y(u,v,t)= 4*cos(v)*2*u; Z(u,v,t)= 2*sin(v)

X(u,v,t)= 2*sin(u)+cos(v); Y(u,v,t)= sin(u)*4*v; Z(u,v,t)= cos(v)

Min U: -8; Max: 9; Steps 46

Min V: -9; Max: 8; Steps 46

 


Nutzerbild von Milica Petrovic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Petrovic - Dienstag, 22. April 2014, 20:56
 

3D Grapher



Nutzerbild von Petar Palibrk
Odgovor: Zadatak 02 - Krive u prostoru
von Petar Palibrk - Dienstag, 22. April 2014, 19:34
 

X=cos(v)*sin(u)

Y=sin(u)+cos(t)

Z=sin(v)

MIN U: -10 MAX U :20 STEPS:40

MIN V:-10 MAX V :20 STEPS:40

Program: 3D Grapher


Nutzerbild von Kruna Zivkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Kruna Zivkovic - Dienstag, 22. April 2014, 20:55
 

3D Grapher

Coordinates:Spherical

a(u,v,t)=v*(sin(u))^5

b(u,v,t)=u*(sin(v))^5

R(u,v,t)=u^2+v^3

Min U:-2 Max U:2 Steps:60 Min V:-2 Max V:2 Steps:80

 


Nutzerbild von Luka Jacimovic
Odgovor: Zadatak 02 - Krive u prostoru
von Luka Jacimovic - Dienstag, 22. April 2014, 21:02
 

3D Grapher



Nutzerbild von Nevena Alavuk
Odgovor: Zadatak 02 - Krive u prostoru
von Nevena Alavuk - Dienstag, 22. April 2014, 21:17
 

3D Grapher

Coordinates:Spherical

a(u,v,t)=cos(u)

b(u,v,t)=cos(u)+v

R(u,v,t)=0.5*u

Min U: 2           Max U: 10         Steps:100

Min V: 1           Max V: 10          Steps:100


Nutzerbild von Anđelina Broćić
Odgovor: Zadatak 02 - Krive u prostoru
von Anđelina Broćić - Dienstag, 22. April 2014, 21:46
 

Coordinates: Cartesian
X (u,v,t) = 3*v*cos(u)*2
Y (u,v,t) = 2*v* sin(u)*3
Z (u,v,t) = 2*v
Domain of variables:
Min U : -10 Max U : 10 Steps: 52
Min V : -10 Max V : 10 Steps: 52

 


Nutzerbild von Margita Vajović
Odgovor: Zadatak 02 - Krive u prostoru
von Margita Vajović - Dienstag, 22. April 2014, 22:00
 

X: [-10,10]

Y: [-10,10]

Z: [-10,10]

T: [0,0] (0)

Selected: New Graph (1/1)

Spherical

a=v*(sin(u))^6

b=u*(sin(v))^7

R=u^2-v^5

U: [-2.5,2.5] (100)

V: [2.5,-2.5] (100)



Nutzerbild von Jovana Kolasinac
Odgovor: Zadatak 02 - Krive u prostoru
von Jovana Kolasinac - Dienstag, 22. April 2014, 22:04
 

x=3*cos(s)+cos(t)*cos(s)

y=3*sin(s)+cos(t)*sin(s)

z=sin(t)

smin=0

smax=2*pi

tmin=0

tmax=2*pi

zmin=-4

zmax=4

ymin=-4

ymax=4

xmin=-4

xmax=4

grid: 14 by 14
Parametric Surfaces (version 1.2)


Nutzerbild von Branka Krstić
Odgovor: Zadatak 02 - Krive u prostoru
von Branka Krstić - Dienstag, 22. April 2014, 22:09
 

3D grapher

coordinates: spherical

a=1.2*sin(v)

b=cos(v)*v

R=5+sin(v)

U: -9, 10   steps:100

V: -10, 10   steps:100


Nutzerbild von Teodora Radosavljevic
Re: Zadatak 02 - Krive u prostoru
von Teodora Radosavljevic - Dienstag, 22. April 2014, 22:52
 

Program: 3D grapher



Nutzerbild von Kristina Savkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Kristina Savkovic - Dienstag, 22. April 2014, 23:01
 

 

step:0.15,start:-20,end:20.

fx=2*t*cos(2*t),fy=2*t*sin(3*t),fz=3*t.

start:-15,end:15,step:0.10.

fx=cos(t*6)*2*t,fy=sin(2*t)*4*t,fz=5*t.

start:-30,end:30,step:0.3.

fx=cos(t)*6*t,fy=sin(t)*5*t,fz=3*t.

step:0.05,start:-15,end:15.

fx=8*t,fy=7*t*sin(2*t),fz=6*t.

 

3D math explorer.

 


Nutzerbild von Nikola Biševac
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Biševac - Dienstag, 22. April 2014, 23:52
 

3d grapher

x=v*(sin(u))^8+5

y=u*(sin(v))^9

z=u*2+v^3

minu-3 maxu3 steps50

minv-4 maxv3 steps90

 


Nutzerbild von Boris Erak
Odgovor: Zadatak 02 - Krive u prostoru
von Boris Erak - Mittwoch, 23. April 2014, 00:53
 

3D Grapher



Nutzerbild von Marina Petru
Odgovor: Zadatak 02 - Krive u prostoru
von Marina Petru - Mittwoch, 23. April 2014, 09:17
 

u (-8,8) (500) v(-8,8) (500)



Nutzerbild von Tijana Šećerov
Odgovor: Zadatak 02 - Krive u prostoru
von Tijana Šećerov - Mittwoch, 23. April 2014, 09:24
 

u [-0.8, 0.8] (800)

v [-0.8, 0.8] (800)



Nutzerbild von Aleksandra Pantelic
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandra Pantelic - Sonntag, 4. Mai 2014, 20:56
 

3D Grapher

 



Nutzerbild von Suzana Simic
Odgovor: Zadatak 02 - Krive u prostoru
von Suzana Simic - Mittwoch, 23. April 2014, 14:24
 

Coordinates: Cartesian

X(u,v,t)= 3*v*sin(3*u)

Y(u,v,t)= 11*v* sin(u)*0.5

Z(u,v,t)= 2*v*5

 

Min U: -10;   Max U: 10;  Steps: 60

Min V: -10;   Max V: 10;  Steps: 60

 

Coordinates: Cylindrical

a(u,v,t)=  u*01

R(u,v,t)= cos(u-v)

Z(u,v,t)= v*0.75

 

Min U: -10;   Max U: 10;  Steps: 20

Min V: -10;   Max V: 10;  Steps: 20

 

 


Nutzerbild von Jana Cicarevic
Odgovor: Zadatak 02 - Krive u prostoru
von Jana Cicarevic - Mittwoch, 23. April 2014, 15:34
 

Coordinates: Spherical

a(u,v,t)= sin(u)*cos(u)-3

b(u,v,t)= cos(u)+v*3

R(u,v,t)= 0.75*u

 

Min U: 10;   Max U: 5;  Steps: 200

Min V: 1;   Max V: 40;  Steps: 100

 

 

 


Nutzerbild von Dunja Stefanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Dunja Stefanovic - Mittwoch, 23. April 2014, 16:00
 

Coordinates: Spherical a(u,v,t)= v*(sin(u))*4 b(u,v,t)= u*(sin(v))*3 R(u,v,t)= u*3+v*3 Min U: -1; Max U: 1; Steps: 70 Min V: -1; Max V: 1; Steps: 70



Nutzerbild von Obrad Orlic
Odgovor: Zadatak 02 - Krive u prostoru
von Obrad Orlic - Mittwoch, 23. April 2014, 16:15
 

Coordinates: Spherical

a(u,v,t)= 1*u

b(u,v,t)= cos(u)+v

R(u,v,t)= 0.1*u

 

Min U: -10;   Max U: 1;  Steps: 50

Min V: -10;   Max V: 10;  Steps: 50

 

 

 


Nutzerbild von Sonja Jokić
Odgovor: Zadatak 02 - Krive u prostoru
von Sonja Jokić - Mittwoch, 23. April 2014, 17:40
 

Coordinates: Cartesian

Function: X(u,v,t)= 4*v*sin(cos(u)*4)^2

          Y(u,v,t)= 4*v*cos(sin(u))^2

          Z(u,v,t)= 2*v^2

Domain of variables:

          MinU: -10   MaxU: 10   Steps: 100

          MinV: -10   MaxV: 10   Steps: 100


Nutzerbild von Jovan Vladimir Cukovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jovan Vladimir Cukovic - Donnerstag, 24. April 2014, 00:38
 

PROGRAM : 3D Grapher

Cylindrical

Function

a(u,v,t)=cos(u)*v-2

R(u,v,t)=tan(u)

Z(u,v,t)=1

Domain of variables

Min U: -10 Max U: 10 Steps: 10

Min V: -10 Max V: 10 Steps: 60

 


Nutzerbild von Marija Blagojevic
Odgovor: Zadatak 02 - Krive u prostoru
von Marija Blagojevic - Donnerstag, 24. April 2014, 22:07
 

Program: 3d Grapher

a=sin(v)-cos(u)

R=4*sin(v)+cos(u)

z=u

Domain of variables:

min U: -20,max U: 30,Steps: 30

min V: -10,max V: 30,Steps: 30


Nutzerbild von Jelena Andjelkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Andjelkovic - Freitag, 25. April 2014, 09:28
 

3D Grapher



Nutzerbild von Jelena Mitrašinović
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Mitrašinović - Freitag, 25. April 2014, 15:18
 

3D Grapher 
Coordinates:

Spherical a=v*(sin(u))^2

b=u*(sin(v))^2

R=u^3+v^3

Min U:-2

Max U:2

Steps:80

Min V:-2

Max V:2

Steps:80


Nutzerbild von Ana Marija Veljovic
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Marija Veljovic - Freitag, 25. April 2014, 15:32
 

X=2*cos(u)-0.5*v+u

Y=3*sin(v)+0.5*u+u

Z=sin(v)+cos(u)

Min U -5 Max U 5 Steps 50

Min V -5 Max V 5 Steps 50


Nutzerbild von Jovana Ninkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jovana Ninkovic - Freitag, 25. April 2014, 16:52
 

Krive u prostoru



Nutzerbild von Katarina Simonovski
Odgovor: Zadatak 02 - Krive u prostoru
von Katarina Simonovski - Freitag, 25. April 2014, 17:12
 

Predstava krivih u prostoru



Nutzerbild von Bojan Vukanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Bojan Vukanovic - Freitag, 25. April 2014, 22:16
 

Program: 3D Grapher

Coordinates: Spherical
a (u,v,t)=3+u+u
b (u,v,t)=sin(u)+v+u
R (u,v,t)=2*u

Domain of variables
Min U: -10      Max U: 1       Steps:40
Min V: -10      Max V: 10      Steps: 40
x,y,z = (4,2,1)


Nutzerbild von Dragana Jelic
Odgovor: Zadatak 02 - Krive u prostoru
von Dragana Jelic - Samstag, 26. April 2014, 08:43
 

3d graper 

coordinates: spherical

a(u,v,t)=cos(u)+v

b(u,v,t)=sin(u) 

R(u,v,t)=0.1*u

min u: -5 max u: 5 steps:60

min v:-12 max v: 12 steps:60


Nutzerbild von Milica Djokic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Djokic - Samstag, 26. April 2014, 11:22
 

Program: 3D Grapher

Coordinate: Spherical

Function:

a(u,v,t)=2*sin(v)+2*cos(t)

b(u,v,t)=sin(u)+v

R(u,v,t)=0.2*u

Domain of variables:

Min U:20; Max U:5; Steps: 5

MinV:5; Max V:10; Steps: 200


Nutzerbild von Senja Radonjic
Odgovor: Zadatak 02 - Krive u prostoru
von Senja Radonjic - Samstag, 26. April 2014, 11:28
 

3D Grapher

Spherical

a(u,v,t)= tan(t)-sin(u);
b(u,v,t)= 3*cos(v);
R(u,v,t)= v;

a(u,v,t)= tan(t)-sin(u);
b(u,v,t)= 3*cos(v); 
R(u,v,t)=v;

Cylindrical

a(u,v,t)= tan(t)-sin(u);
R(u,v,t)= 3*cos(v);
Z(u,v,t)=v.


Nutzerbild von Dora Šterić
Odgovor: Zadatak 02 - Krive u prostoru
von Dora Šterić - Sonntag, 27. April 2014, 00:10
 

Coordinates: Cartesian

X(u,v,t)=6*cos(v)+sin(u); Y(u,v,t)=6*cos(v)*2*u; Z(u,v,t)=2*sin(v);

X(u,v,t)=2*sin(u)+cos(v); Y(u,v,t)=2*sin(u)*8*v; Z(u,v,t)=cos(v);

Min U: -10 Max U: 10 Steps: 45

Min V: -10 Max V: 10 Steps: 45

 


Nutzerbild von Katarina Jecmenica
Odgovor: Zadatak 02 - Krive u prostoru
von Katarina Jecmenica - Samstag, 26. April 2014, 16:16
 

x=4*cos(u)*sin(u)

y=0.3*u^3

z=2.4*cos(u)

x=4.3*cos(u)*sin(u)

y=0.3*u^3

z=2.6*cos(u)

x=4.6*cos(u)*sin(u)

y=0.3*u^3

z=2.8*cos(u)

x=4.9*cos(u)*sin(u)

y=0.3*u^3

z=3.0*cos(u)

U=-20,20 steps=40

V=-20,20 steps=40

x=1.0*cos(u)

y=2.0*sin(u)*cos(u)

z=u^2

x=1.2*cos(u)

y=2.2*sin(u)*cos(u)

z=u^2

U=-25,50 steps=50

V=-25,50 steps=50

3D Grapher


Nutzerbild von Maja Glisovic
Odgovor: Zadatak 02 - Krive u prostoru
von Maja Glisovic - Samstag, 26. April 2014, 16:37
 

Spherical



Nutzerbild von Milica Zivkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Zivkovic - Samstag, 26. April 2014, 16:40
 

Krive u prostoru
Program 3D Grapher
coordinates Spherical

a(u,v,t)= v*(cos(v))^2

b(u,v,t)=u*(cos(u))^3

 

R(u,v,t)=v^2+u^3

Min U : -1 Max U : 1 Steps: 40

 

Min V: -1 Max V:1 steps:40


Nutzerbild von Marija Stancic
Odgovor: Zadatak 02 - Krive u prostoru
von Marija Stancic - Samstag, 26. April 2014, 17:34
 

3d Grapher

Choordinates: Spherical

Functions:

a(u,v,t)= sin(u)*cos(u)-2*v

b(u,v,t,)= cos(u)+v*3

R(u,v,t,)= 1*u

Domain of variables:

Min U: -10    Max U: 10     Steps: 150

Min V: -10    Max V: 50     Steps: 100

 


Nutzerbild von Stefan Radojković
Odgovor: Zadatak 02 - Krive u prostoru
von Stefan Radojković - Samstag, 26. April 2014, 19:21
 

3D grapher

X=1*sin(v)*cos(v) Y=1*cos(v)*tan(v)*sin(v) Z=1*cos(v)
X=2*sin(v)*cos(v) Y=2*cos(v)*tan(v)*sin(v) Z=2*cos(v)
X=3*sin(v)*cos(v) Y=3*cos(v)*tan(v)*sin(v) Z=3*cos(v)
X=4*sin(v)*cos(v) Y=4*cos(v)*tan(v)*sin(v) Z=4*cos(v)
X=5*sin(v)*cos(v) Y=5*cos(v)*tan(v)*sin(v) Z=5*cos(v)
X=6*sin(v)*cos(v) Y=6*cos(v)*tan(v)*sin(v) Z=6*cos(v)

min U:-10 min V:-10  steps:950

max U:10   max V:10   steps:950


Nutzerbild von Milica Živković
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Živković - Samstag, 26. April 2014, 22:05
 

Korišćeni program - 3D Grapher

Coordinates: Cartesian

X (u,v,t) = 2.5^u*sin(3*u)
 
Y (u,v,t) =2.5^u*cos(3*u)

Z (u,v,t) = u+v

Domain of variables:

Min U : -20 Max U : 20 Steps: 400

Min V : -5 Max V : 5 Steps: 20


Nutzerbild von Bogdan Ivaniš
Odgovor: Zadatak 02 - Krive u prostoru
von Bogdan Ivaniš - Samstag, 26. April 2014, 23:25
 

Program : 3d grapher



Nutzerbild von Anka Savatic
Odgovor: Zadatak 02 - Krive u prostoru
von Anka Savatic - Sonntag, 27. April 2014, 09:47
 

Program 3D Grapher



Nutzerbild von Isidora Ilic
Re: Odgovor: Zadatak 02 - Krive u prostoru
von Isidora Ilic - Sonntag, 27. April 2014, 14:13
 

3D Grapher



Nutzerbild von Filip Mihajlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Filip Mihajlovic - Sonntag, 27. April 2014, 18:18
 

3D GRAPHER

Coordinates: Cylindrical

a(u,v,t)=sin(u)

R(u,v,t)=sin(u)+v

Z(u,v,t)=0,5*u

Min U : -10     Max U : 10     Steps : 20 

Min V : -10     Max V : 10     Steps : 20


Nutzerbild von Aleksandar Mihajlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandar Mihajlovic - Sonntag, 27. April 2014, 18:49
 

3D GRAPHER


Coordinater :  Spherical

a(u,v,t) = cos(u)

R(u,v,t) = cos(u)+v

Z(u,v,t) = 0,5*u

Min U : 2    Max U : 10     Steps : 100 

Min V : 1    Max V : 10     Steps : 100

 


Nutzerbild von Bojan Bacevic
Odgovor: Zadatak 02 - Krive u prostoru
von Bojan Bacevic - Sonntag, 27. April 2014, 18:38
 

3D Grapher

Coordinates: Cylindrical

a(u,v,t)= cos(u)-t

R(u,v,t)= sin(u)+v+cos(t)

Z(u,v,t)= 0.01*u

Min U: -45         Max U: 50           Steps: 60

Min V: -25         Max V: 30           Steps: 70

 


Nutzerbild von Dimitrije Stanojevic
Odgovor: Zadatak 02 - Krive u prostoru
von Dimitrije Stanojevic - Sonntag, 27. April 2014, 21:26
 

X= 3*v*cos(2*u)

Y=2*v*sin(u)*3

Z=2*v

Min U = -1

Min V= -1

Max U = 1

Max V = 1 

Steps = 50

Steps = 50


Nutzerbild von Nikola Popovic
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Popovic - Montag, 28. April 2014, 17:31
 

X: [-10,10]
Y: [-10,10]
Z: [-10,10]
T: [0,0] (0)
Selected:
New Graph (1/1)
Cartesian
X=sin(v+u)
Y=sin(u)
Z=cosh(v)
U: [-5,10] (10)
V: [-5,10] (10)


Nutzerbild von luka nikolic
Odgovor: Zadatak 02 - Krive u prostoru
von luka nikolic - Montag, 28. April 2014, 19:04
 

3D Grapher

Podaci su na slici


Nutzerbild von Tina Ignjatović
Odgovor: Zadatak 02 - Krive u prostoru
von Tina Ignjatović - Montag, 28. April 2014, 21:09
 

3D Grapher

Spherical

a=3+1,3*cos(u)

b=cos(u)+v

R=0,9*u

minU=2, maxU=10, steps=200

minV=1, maxV=10, steps=150


Nutzerbild von Strahinja Gojkov
Odgovor: Zadatak 02 - Krive u prostoru
von Strahinja Gojkov - Montag, 28. April 2014, 21:34
 

Krive u prostoru 



Nutzerbild von Mila Pantelic
Odgovor: Zadatak 02 - Krive u prostoru
von Mila Pantelic - Montag, 28. April 2014, 22:02
 

3D grapher

  1. X= 1*sin(v)*cos(v); Y=1*sin(v)^2*tan(v)*cos(v); Z=1*cos(v)
  2. X= 2*sin(v)*cos(v); Y=1*sin(v)^2*tan(v)*cos(v); Z=2*cos(v)
  3. X= 3*sin(v)*cos(v); Y=1*sin(v)^2*tan(v)*cos(v); Z=3*cos(v)
  4. X= 4*sin(v)*cos(v); Y=1*sin(v)^2*tan(v)*cos(v); Z=4*cos(v)
  5. X= 5*sin(v)*cos(v); Y=1*sin(v)^2*tan(v)*cos(v); Z=5*cos(v)
  6. X= 6*sin(v)*cos(v); Y=1*sin(v)^2*tan(v)*cos(v); Z=6*cos(v)
  7. X= 7*sin(v)*cos(v); Y=1*sin(v)^2*tan(v)*cos(v); Z=7*cos(v)

min U:-10  min V:10  steps:200

max U:-10  max V:10  steps:200


Nutzerbild von Stefan Ilic
Odgovor: Zadatak 02 - Krive u prostoru
von Stefan Ilic - Montag, 28. April 2014, 23:50
 

3D Grapher

 

Cartesian

X=u*sin(u)
Y=v*cos(v)
Z=u+v

U: [-10,10] (100)
V: [-5,5] (100)


Nutzerbild von Dalibor Mijajlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Dalibor Mijajlovic - Dienstag, 29. April 2014, 01:22
 

Program: 3D Grapher

cylindrical

a (u,v,t) = 3*v*sin(3*u)
R(u,v,t) = 7*v* sin(u)*1
Z(u,v,t)= 2*v*7
min U= -10  max U = 10 Steps = 60
min U= -10  max U = 10 Steps = 60



Spherical
a (u,v,t) = u*02
R(u,v,t) = cos(u-v)
Z(u,v,t)= v*0.9
min U= -10  max U = 10 Steps = 2
min U= -10  max U = 10 Steps = 2


Nutzerbild von Jovan Životić
Odgovor: Zadatak 02 - Krive u prostoru
von Jovan Životić - Dienstag, 29. April 2014, 10:27
 

3D Grapher

X: [-10,10]
Y: [-10,10]
Z: [-10,10]
T: [0,0] (0)
Selected:
123 (1/1)
Spherical
a=cos(u)+t+t
b=sin(u)+v+v
R=2*u
U: [-8,12] (35)
V: [-8,12] (50)

 


Nutzerbild von Divna Tesic
Odgovor: Zadatak 02 - Krive u prostoru
von Divna Tesic - Dienstag, 29. April 2014, 23:21
 

3D Grapher

Coordinates: Spherical

Function: 

a=v*(sin(u))ˆ2*u

b=u*(sin(v))ˆ5*v

R=uˆ2+vˆ2

domain of variables:

Min U:-2      Max U:0.5      Steps:100

Min V:-2      Max V:0.5      Steps:100


Nutzerbild von Marija Hadzic
Re: Zadatak 02 - Krive u prostoru
von Marija Hadzic - Mittwoch, 30. April 2014, 12:17
 

3D grapher


Nutzerbild von Nemanja Antonijevic
Odgovor: Zadatak 02 - Krive u prostoru
von Nemanja Antonijevic - Mittwoch, 30. April 2014, 21:35
 

3D Grapher

Coordinates: Spherical

Function: 

a=v*(sin(u))ˆ8*u

b=u*(sin(v))ˆ3*v

R=uˆ2+vˆ2

domain of variables:

Min U:-2      Max U:0.5      Steps:100

Min V:-2      Max V:0.5      Steps:100


Nutzerbild von Sanja Milosevic
Odgovor: Zadatak 02 - Krive u prostoru
von Sanja Milosevic - Donnerstag, 1. Mai 2014, 15:40
 

3D grapher

Coordinates: Cartesian

x=2*cos(u)  y=2*u  z=2*sin(u)

x=0.9*cos(u)  y=0.8*sin(u)  z=0.01*u^3

x=0.6*cos(u)  y=0.5*sin(u)  z=0.01*u^3

x=4.5*cos(u)  y=4.5*sin(u)  z=2*cos(u)

x=5.5*cos(u)  y=5.5*sin(u)  z=2*cos(u)

x=5*cos(u)  y=5*sin(u)  z=1*cos(u)

x=0.6*cos(u)  y=0.6*sin(u)  z=0.05*u^3

x=0.75*cos(u)  y=0.75*sin(u)  z=0.05*u^3

x=0.4*cos(u)  y=0.4*sin(u)  z=0.05*u^3

x=2.2*cos(u)  y=2.2*u  z=2*sin(u)

x=2.5*cos(u)  y=2.5*u  z=2*sin(u)

x=2.8*cos(u)  y=2.8*u  z=2*sin(u)

 

Min U,V -10/-10

Max U,V 10/10

Steps 150/150


Nutzerbild von Ana Petrovic
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Petrovic - Donnerstag, 1. Mai 2014, 19:42
 

Program: 3D Grapher

Coordinates: Cylindrical

a(u,v,t) = cos(60*v)

R(u,v,t) = sin(u)

Z = 2*v

Min U: -10  Max U: 10  Steps: 40

Min V: -10  Max V: 10  Steps: 40


Nutzerbild von Lidija Stojić
Odgovor: Zadatak 02 - Krive u prostoru
von Lidija Stojić - Donnerstag, 1. Mai 2014, 21:06
 

Korišćeni program: 3D Grapher

Coordinates: Spherical

Function:

a(u,v,t)= 7+cos(1.5*u)^4

b(u,v,t)= 1*v*sin(v+v)

R(u,v,t)= 1.2*v

Domain of variables:

Min U: 7          Max U: 15            Steps: 20

Min V: 5          Max V: 10            Steps: 40


Nutzerbild von Stevan Simovic
Odgovor: Zadatak 02 - Krive u prostoru
von Stevan Simovic - Freitag, 2. Mai 2014, 13:39
 


Korišćeni program - 3D GRAPHER


Coordinates: CARTESIAN

X (u,v,t) = sin(u)*cos(u)-4
 
Y (u,v,t) = cos(u)+v*3

Z (u,v,t) = 0.95*u

Domain of variables:

Min U : -10 Max U : 5 Steps: 200

Min V : -1 Max V : 30 Steps: 90



Nutzerbild von Stefana Radovanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Stefana Radovanovic - Freitag, 2. Mai 2014, 14:33
 

Program: 3D Grapher

1. Coordinate: Cartesian

Function:

X(u,v,t)=v*sin(v))^3

Y(u,v,t)=v*(cos(u))

Z(u,v,t)=v*u

Domain of variables:

Min U:-10; Max U:10; Steps: 150

MinV:-10; Max V:10; Steps: 150


Nutzerbild von Sara - Marija Simic
Odgovor: Zadatak 02 - Krive u prostoru
von Sara - Marija Simic - Freitag, 2. Mai 2014, 14:48
 

X(u,v,t)=v*(sin(u))^5*v

Y(u,v,t)=u*(sin(v))^5*u

Z(u,v,t)=u^5+v^5

MinU = -2 MaxU = 1,5 Steps = 95

MinV = -2 MaxV = 1,5 Steps = 95


Nutzerbild von Sara - Marija Simic
Odgovor: Zadatak 02 - Krive u prostoru
von Sara - Marija Simic - Freitag, 2. Mai 2014, 15:34
 

3D Grapher

Coordinates: Czlindrical

X(u,v,t)=v*(sin(u))^5*v

Y(u,v,t)=u*(sin(v))^5*u

Z(u,v,t)=u^5+v^5

MinU = -2 MaxU = 1,5 Steps = 95

MinV = -2 MaxV = 1,5 Steps = 95


Nutzerbild von Iris Glavas
Odgovor: Zadatak 02 - Krive u prostoru
von Iris Glavas - Freitag, 2. Mai 2014, 15:21
 

Krive u prostoru

Spherical

a= v(sin(u-2))3

b= u(sin(v-3))3

R= 3u + 3v

Domen:

min u= -1 max u= 2 steps= 50

min v = -1 max v = 1 steps= 70

Nutzerbild von Jelena Mojićević
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Mojićević - Freitag, 2. Mai 2014, 16:18
 

3D Grapher

Cartesian

Function:

X=v*cos(u)

Y=u*cos(v)

Z=0.3*u

Variables

MinU:2

MinV:6

MaxU:8

MaxV:10

Steps:100

Steps:100


Nutzerbild von Srdjan Micanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Srdjan Micanovic - Freitag, 2. Mai 2014, 17:34
 

Program:3D Grapher



Nutzerbild von Martina Milosavljević
Odgovor: Zadatak 02 - Krive u prostoru
von Martina Milosavljević - Freitag, 2. Mai 2014, 19:03
 

Coordinates: Cartesian

Function:

x(u,v,t)=3*V*cos(2*u)

y(u,v,t)=2*V*sin(u)*3

z(u,v,t)=2*V*4

Domain of variables:

Min U: -9   Max U: 10   Steps: 50

Min V: -10   Max V: 9   STEPS: 50


Nutzerbild von Jelena Pilipovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Pilipovic - Freitag, 2. Mai 2014, 19:22
 

3D GRAPHER

Coordinates: Cartesian

1)      X(u,v,t)= 1*sin(u);   Y(u,v,t)= 2* cos(u);   Z(u,v,t)=  0.01*u^3;

2)      X(u,v,t)= 1.25*sin(u);   Y(u,v,t)=  2.25*cos(u);   Z(u,v,t)=  0.01*u^3;

3)      X(u,v,t)= 1.5*sin(u);   Y(u,v,t)=  2.5cos(u);   Z(u,v,t)=  0.01*u^3;

4)      X(u,v,t)= 1.75*sin(u);   Y(u,v,t)=  2.75*cos(u);   Z(u,v,t)=  0.01*u^3;

5)      X(u,v,t)= 2*sin(u);   Y(u,v,t)=  3*cos(u);   Z(u,v,t)=  0.01*u^3;

6)      X(u,v,t)= 2*sin(u);   Y(u,v,t)=  1*cos(u);   Z(u,v,t)=  0.01*u^5;

7)      X(u,v,t)= 2.25*sin(u);   Y(u,v,t)=  1.25cos(u);   Z(u,v,t)=  0.01*u^5;

8)      X(u,v,t)= 2.5*sin(u);   Y(u,v,t)=  1.5*cos(u);   Z(u,v,t)=  0.01*u^5;

9)      X(u,v,t)= 2.75*sin(u);   Y(u,v,t)= 1.75* cos(u);   Z(u,v,t)=  0.01*u^5;

10)   X(u,v,t)= 3*sin(u);   Y(u,v,t)=  2*cos(u);   Z(u,v,t)=  0.01*u^5;

11)   X(u,v,t)= 3.25*sin(u);   Y(u,v,t)=  2.25*cos(u);   Z(u,v,t)=  0.01*u^5;

 

Min U/Min V: -10

MaxU/MaxV: 10

Steps: 100

Line width:  1-4

 

 

 
 

 


Nutzerbild von Snezana Krnic
Odgovor: Zadatak 02 - Krive u prostoru
von Snezana Krnic - Freitag, 2. Mai 2014, 20:31
 

Coordinates: Cartesian

x ( u, v, t)= 5*v*(cos(7*u))^4;   y ( u, v, t)= 2*sin(7*u)^4;   z ( u, v, t)= 2*v;

Domain of variables: min U: -5, max U: 15, steps: 30;   min V: -5, max V: 15, steps: 30; 

Program: 3D Grapher

 

Nutzerbild von Ivan Šuić
Odgovor: Zadatak 02 - Krive u prostoru
von Ivan Šuić - Freitag, 2. Mai 2014, 20:33
 

 3D Grapher

Coordinates: shperical

X (u,v,t) =cos(u)
 
Y (u,v,t) = cos(u)+v

Z (u,v,t) =6*cos(v)

Domain of variables:

Min U : -20 Max U : 10 Steps: 50

Min V : -10 Max V : 100 Steps: 100

saljem 2 slike istog sistema krivih u prostoru gledano sa prednje i sa zadnje strane



Nutzerbild von Mladen Kostadinovic
Odgovor: Zadatak 02 - Krive u prostoru
von Mladen Kostadinovic - Freitag, 2. Mai 2014, 21:34
 

Program 3D Grapher
Coordinates: Spherical
Function:
a(u,v,t)=2*(sin(u))
b(u,v,t)=cos(u)-sin(v)
R(u,v,t)=sin(v)
Domain of variables:
Min U:-12 Max U:14 Steps:50
Min V:-7 Max V:14 Steps:60


Nutzerbild von Atanasije Janicijevic
Odgovor: Zadatak 02 - Krive u prostoru
von Atanasije Janicijevic - Freitag, 2. Mai 2014, 21:39
 

Program 3D Grapher
Coordinates: Spherical
Function:
a(u,v,t)=sin(v)
b(u,v,t)=cos(u)+v
R(u,v,t)=2*u
Domain of variables:
Min U:-5 Max U:4 Steps:70
Min V:-11 Max V:12 Steps:70


Nutzerbild von Jovana Pavlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jovana Pavlovic - Samstag, 3. Mai 2014, 11:48
 

Program: 3D grapher

Coordinates: Cartesian

X(u,v,t)= 3*cos(u)

Y(u,v,t)= 2*v* sin(u)

Z(u,v,t)= 5*v

Min U: - 10    Max U: 10   Steps:80

Min V: - 10    Max V: 10    Steps:70

 


Budimpesta
Odgovor: Zadatak 02 - Krive u prostoru
von Dragan Vukovic - Samstag, 3. Mai 2014, 12:25
 

coordinates:cylindrical

Funcrion:

a(u,v,t)=2*v*cos(u)

R(u,v,t)=u*sin(v)

Z(u.v.t)=u*v

Min U: -3

MacU: 15

Steps: 350

Min V: -25

Max V: 14

Steps: 40


Nutzerbild von Sara Antov
Odgovor: Zadatak 02 - Krive u prostoru
von Sara Antov - Samstag, 3. Mai 2014, 12:32
 

coordinates:cylindrical

Funcrion:

a(u,v,t)=2*v*cos(u)

R(u,v,t)=u*sin(v)

Z(u.v.t)=u*v

Min U: -6

MaxU: 12

Steps: 400

Min V: -50

Max V: 12

Steps: 40


Nutzerbild von Andjela Rajovic
Odgovor: Zadatak 02 - Krive u prostoru
von Andjela Rajovic - Samstag, 3. Mai 2014, 12:42
 

Program: 3D Grapher

Coordinates: Spherical

Function:

a(u,v,t)=0.8*cos(u) b(u,v,t)=0.5*sin(u) R(u,v,t)=0.3*cos(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 100/100

a(u,v,t)=0.8*cos(u) b(u,v,t)=0.5*sin(u) R(u,v,t)=0.8*cos(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 100/100

a(u,v,t)=0.8*cos(u) b(u,v,t)=0.5*sin(u) R(u,v,t)=0.8*cos(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 180/180

a(u,v,t)=0.8*cos(u) b(u,v,t)=0.5*sin(u) R(u,v,t)=0.2*cos(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 100/100

a(u,v,t)=0.08*cos(u) b(u,v,t)=0.05*sin(u) R(u,v,t)=0.02*cos(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 250/200

a(u,v,t)=0.08*cos(u) b(u,v,t)=0.05*sin(u) R(u,v,t)=0.02*cos(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 250/200

a(u,v,t)=0.1*cos(u) b(u,v,t)=0.2*sin(u) R(u,v,t)=0.02*sin(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 250/200

a(u,v,t)=0.3*cos(u) b(u,v,t)=0.3*sin(u) R(u,v,t)=0.02*sin(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 250/200

a(u,v,t)=0.5*cos(u) b(u,v,t)=0.5*sin(u) R(u,v,t)=0.3*cos(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 250/200

a(u,v,t)=0.5*cos(u) b(u,v,t)=0.5*sin(u) R(u,v,t)=0.5*cos(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 250/200

a(u,v,t)=0.8*cos(u) b(u,v,t)=0.7*sin(u) R(u,v,t)=0.7*tan(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 200/200

a(u,v,t)=1.8*cos(u) b(u,v,t)=1.7*sin(u) R(u,v,t)=1.7*tan(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 200/200

a(u,v,t)=2.8*cos(u) b(u,v,t)=2.7*sin(u) R(u,v,t)=2.7*tan(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 200/200

a(u,v,t)=3.8*cos(u) b(u,v,t)=3.7*sin(u) R(u,v,t)=3.7*tan(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 200/200

a(u,v,t)=4.8*cos(u) b(u,v,t)=4.7*sin(u) R(u,v,t)=4.7*tan(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 200/200

a(u,v,t)=5.8*cos(u) b(u,v,t)=5.7*sin(u) R(u,v,t)=5.7*tan(u) MinU=-10 MaxU=10 MinV=10 MaxV=10 Steps: 200/200


Nutzerbild von Katarina Andric
Odgovor: Zadatak 02 - Krive u prostoru
von Katarina Andric - Samstag, 3. Mai 2014, 14:07
 

Program: 3D Grapher

Coordinates: Spherical

Function:
a(u,v,t)= (5*sin(u)-2*sin(v))*0.2
b(u,v,t)= sin(u)*cos(v)
c(u,v,t)= u*3+t

Domain of variables:
MinU: 2; MaxU:10; Steps:80;
MinV:2; MaxV:10; Steps:30;



Nutzerbild von Dejan Paripovic
Odgovor: Zadatak 02 - Krive u prostoru
von Dejan Paripovic - Samstag, 3. Mai 2014, 14:26
 

Program: 3D grapher
Coordinates: Cartesian
Function
X(u,v,t)=cos(u); Y(u,v,t)=sin(u); Z(u,v,t)=0.5*u^9;
MinU/V: -9; MaxU/V: 9; Steps: 200
X(u,v,t)=1.25*cos(u); Y(u,v,t)=1.25*sin(u); Z(u,v,t)=0.5*u^11;
MinU/V: -10; MaxU/V: 10; Steps: 200
X(u,v,t)=1.5*cos(u); Y(u,v,t)=1.5*sin(u); Z(u,v,t)=0.5*u^13;
MinU/V: -12; MaxU/V: 12; Steps: 200
X(u,v,t)=1.75*cos(u); Y(u,v,t)=1.75*sin(u); Z(u,v,t)=0.5*u^15;
MinU/V: -13; MaxU/V: 13; Steps: 200
X(u,v,t)=2*cos(u); Y(u,v,t)=2*sin(u); Z(u,v,t)=0.5*u^17;
MinU/V: -14; MaxU/V: 14; Steps: 200
X(u,v,t)=6.5*cos(u); Y(u,v,t)=6.5*sin(u); Z(u,v,t)=3*cos(u);
MinU/V: -10; MaxU/V: 10; Steps: 100
X(u,v,t)=8.5*cos(u); Y(u,v,t)=8.5*sin(u); Z(u,v,t)=3*cos(u);
MinU/V: -10; MaxU/V: 10; Steps: 100
X(u,v,t)=10*cos(u); Y(u,v,t)=10*sin(u); Z(u,v,t)=3*cos(u);
MinU/V: -10; MaxU/V: 10; Steps: 100
X(u,v,t)=0.3*cos(u); Y(u,v,t)=0.3*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -50; MaxU/V: 50; Steps: 100
X(u,v,t)=0.5*cos(u); Y(u,v,t)=0.5*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -50; MaxU/V: 50; Steps: 100
X(u,v,t)=0.7*cos(u); Y(u,v,t)=0.7*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -50; MaxU/V: 50; Steps: 100
X(u,v,t)=0.85*cos(u); Y(u,v,t)=0.85*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -50; MaxU/V: 50; Steps: 100
X(u,v,t)=1.3*cos(u); Y(u,v,t)=1.3*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -50; MaxU/V: 50; Steps: 100
X(u,v,t)=3*cos(u); Y(u,v,t)=3*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -7; MaxU/V: 7; Steps: 100
X(u,v,t)=3.5*cos(u); Y(u,v,t)=3.5*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -6; MaxU/V: 6; Steps: 100
X(u,v,t)=4*cos(u); Y(u,v,t)=4*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -5; MaxU/V: 5; Steps: 100
X(u,v,t)=4.5*cos(u); Y(u,v,t)=4.5*sin(u); Z(u,v,t)=0.05*u^3;
MinU/V: -4; MaxU/V: 4; Steps: 100
X(u,v,t)=0.5*cos(u); Y(u,v,t)=0.5*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 250
X(u,v,t)=0.7*cos(u); Y(u,v,t)=0.7*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 250
X(u,v,t)=0.9*cos(u); Y(u,v,t)=0.9*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 250
X(u,v,t)=1.1*cos(u); Y(u,v,t)=1.1*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 250
X(u,v,t)=1.3*cos(u); Y(u,v,t)=1.3*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 250


Nutzerbild von Ivona Remert
Odgovor: Zadatak 02 - Krive u prostoru
von Ivona Remert - Samstag, 3. Mai 2014, 15:17
 

Program: 3D grapher
Coordinates: Cartesian
Function
X(u,v,t)=2*cos(u); Y(u,v,t)=2*sin(u); Z(u,v,t)=0.6*u^3;
MinU/V: -6; MaxU/V: 6; Steps: 100
X(u,v,t)=3*cos(u); Y(u,v,t)=3*sin(u); Z(u,v,t)=0.6*u^3;
MinU/V: -6; MaxU/V: 6; Steps: 100
X(u,v,t)=4*cos(u); Y(u,v,t)=4*sin(u); Z(u,v,t)=0.6*u^3;
MinU/V: -6; MaxU/V: 6; Steps: 100
X(u,v,t)=5*cos(u); Y(u,v,t)=5*sin(u); Z(u,v,t)=0.6*u^3;
MinU/V: -6; MaxU/V: 6; Steps: 100
X(u,v,t)=3.25*cos(u); Y(u,v,t)=3.25*sin(u); Z(u,v,t)=0.5*u^2;
MinU/V: -6; MaxU/V: 6; Steps: 100
X(u,v,t)=3.75*cos(u); Y(u,v,t)=3.75*sin(u); Z(u,v,t)=0.5*u^2;
MinU/V: -5; MaxU/V: 5; Steps: 100
X(u,v,t)=4.25*cos(u); Y(u,v,t)=4.25*sin(u); Z(u,v,t)=0.5*u^2;
MinU/V: -5; MaxU/V: 5; Steps: 100
X(u,v,t)=5.25*cos(u); Y(u,v,t)=5.25*sin(u); Z(u,v,t)=0.5*u^2;
MinU/V: -8; MaxU/V: 8; Steps: 100
X(u,v,t)=0.5*cos(u); Y(u,v,t)=0.5*sin(u); Z(u,v,t)=0.1*u^3;
MinU/V: -10; MaxU/V: 10; Steps: 100
X(u,v,t)=0.7*cos(u); Y(u,v,t)=0.7*sin(u); Z(u,v,t)=-0.1*u^3;
MinU/V: -10; MaxU/V: 10; Steps: 100
X(u,v,t)=0.9*cos(u); Y(u,v,t)=0.9*sin(u); Z(u,v,t)=0.1*u^3;
MinU/V: -10; MaxU/V: 10; Steps: 100
X(u,v,t)=1.1*cos(u); Y(u,v,t)=1.1*sin(u); Z(u,v,t)=-0.1*u^3;
MinU/V: -10; MaxU/V: 10; Steps: 100
X(u,v,t)=1.3*cos(u); Y(u,v,t)=1.3*sin(u); Z(u,v,t)=-0.1*u^3;
MinU/V: -10; MaxU/V: 10; Steps: 100


Nutzerbild von Marina Jevremovic
Odgovor: Zadatak 02 - Krive u prostoru
von Marina Jevremovic - Samstag, 3. Mai 2014, 16:30
 

3D Grapher



Nutzerbild von Jelena Zaric
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Zaric - Samstag, 3. Mai 2014, 19:05
 

Program: 3D Grapher

Coordinates: Cartesian
X(u,v,t)= 2*v*cos(u)

Y(u,v,t)= 4*sin(u)*cos(v)+2*(u)

Z(u,v,t)= u*v

Min U: -6     Max U: 20     Steps: 250

Min V: -6      Max V: 5       Steps: 120


Nutzerbild von Mila Petrusic
Odgovor: Zadatak 02 - Krive u prostoru
von Mila Petrusic - Samstag, 3. Mai 2014, 19:29
 

x=4*cos(v)+sin(v)*4 ; y=v z= 4*sin(v)-cos(v)*4

x=3.5*cos(v)+sin(v)*3.5 ; y=v z= 3.5*sin(v)-cos(v)*3.5

x=3*cos(v)+sin(v)*3 ; y=v z= 3*sin(v)-cos(v)*3

x=2.5*cos(v)+sin(v)*2.5 ; y=v z= 2.5*sin(v)-cos(v)*2.5

x=2*cos(v)+sin(v)*2.5 ; y=v  z= 2*sin(v)-cos(v)*2.5

x=4.5*cos(v)+sin(v)*4 ; y=v  z= 4.5*sin(v)-cos(v)*4

x=6*cos(v)+sin(v)*4 ; y=v z= 6*sin(v)-cos(v)*4

x=5*cos(v)+sin(v)*4 ; y=v z= 5*sin(v)-cos(v)*4

x=8*cos(v)+sin(v)*4 ; y=v z= 8*sin(v)-cos(v)*4

x=7*cos(v)+sin(v)*4 ; y=v z= 7*sin(v)-cos(v)*4

 

minU= -10 max U= 10 steps : 200

minV=-10 maxU= 10  steps : 200


Nutzerbild von Luka Ilić
Odgovor: Zadatak 02 - Krive u prostoru
von Luka Ilić - Samstag, 3. Mai 2014, 20:14
 

Program: 3D Grapher



Nutzerbild von Nikola Kostic
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Kostic - Samstag, 3. Mai 2014, 21:16
 

X(u,v,t) 4*v*cos(2*u)

Y(u,v,t) 3*v* sin(u)*3

Z(u,v,t  )2*v

min U: 10                    max U: -10                  Steps: 65

MIN V: 1                      max V: -10                  Steps: 65


Nutzerbild von Anđela Ivković
Odgovor: Zadatak 02 - Krive u prostoru
von Anđela Ivković - Sonntag, 4. Mai 2014, 02:06
 

Program: 3D Grapher
Koordinatni sistem: Cartesian

1.

X=2*sin(u+1.5)^4
Y=2*cos(u-2)
Z=u/5
U: [0,50] (200)
V: [0,0] (0)

2.

X=2*sin(u-1.5)^2
Y=2*cos(u+2)
Z=u/5
U: [0,50] (200)
V: [0,0] (0)

3.

X=2*sin(u+2.7)
Y=2*cos(u-3.5)
Z=(u^2)/100
U: [0,50] (200)
V: [0,0] (0)

4.-12.

X=a*cos(u); a=[5, 5, 4.5, 4, 3.5, 3, 2.5, 2]
Y=b*sin(u); b=[2, 2, 2.5, 3, 3.5, 4, 4.5, 5]
Z=c; c={0,1,2,3,...,8}
U: [0,20] (200)
V: [0,0] (0)

 

 


Nutzerbild von Katarina Đurić
Odgovor: Zadatak 02 - Krive u prostoru
von Katarina Đurić - Sonntag, 4. Mai 2014, 09:08
 

program: 3D Grapher

parametri:

coordinates: cartesian

x = cos(u)

y = sin(v)

z = v-u

u (-10, 10)

v (-10,10)

 


Nutzerbild von Ivana Savic
Odgovor: Zadatak 02 - Krive u prostoru
von Ivana Savic - Sonntag, 4. Mai 2014, 11:34
 

Program: 3D Grapher

Coordinates: Cartesian

X(u,v,t)= 2*sin(u)

Y(u,v,t)= 10*v*sin(u)*2

Z(u,v,t)=u^3+v^3

Min U: -2  Max U: 2  Steps: 50

Min V: -2  Max V: 2  Steps: 50

X(u,v,t)= 10*v*sin(u)

Y(u,v,t)= u*(sin(v))*2

Z(u,v,t)= t*sin(u))^3

Min U: -3  Max U: 3  Steps: 30

Min V: -3  Max V: 3  Steps: 30



Nutzerbild von Danica Mijonic
Odgovor: Zadatak 02 - Krive u prostoru
von Danica Mijonic - Sonntag, 4. Mai 2014, 12:11
 

program: 3D grapher

coordinates:spherical

a(u,v,t)=5*sin(v)+cos(t)

b(u,v,t)=8*sin(8*u)+cos(t)

R(u,v,t)=sin(v)

U min -20  max 20 steps 20

V min -15  max 15 steps 15


Svako svet vidi drugacije, moj je apsolutno umetnicki fabulozno fantastican!
Odgovor: Zadatak 02 - Krive u prostoru
von Marina Georgijević - Sonntag, 4. Mai 2014, 13:11
 

krive u prostoru 

 



Nutzerbild von Zoja Milic
Odgovor: Zadatak 02 - Krive u prostoru
von Zoja Milic - Sonntag, 4. Mai 2014, 13:19
 

3D Grapher

 

Coordinates: Spherical

Functions:     a(u,v,t) = v*(sin(u))*4

                      b(u,v,t) = u*(sin(v))*3

                      R(u,v,t) = u*3 + v*3

Domain of variables:

Min U: -1  Max U: 1   Steps: 100

Min V: -1  Max U: 2   Steps: 100


Nutzerbild von Ivana Jancic
Odgovor: Zadatak 02 - Krive u prostoru
von Ivana Jancic - Sonntag, 4. Mai 2014, 13:32
 

3D Grapher



Nutzerbild von Milica Urosevic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Urosevic - Sonntag, 4. Mai 2014, 14:11
 

Program: 3D Grapher

Coordinates: spherical

Functions:

a(u,v,t)= cos(u)*sin(v)

b(u,v,t)= 2*v+cos(t)

R(u,v,t)=cos(u)+v

Domain variables:

MinU: 10 MaxU: 5 steps:10 

MinV: 1 MaxV: 10 steps:120


Nutzerbild von Nadja Ninkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Nadja Ninkovic - Sonntag, 4. Mai 2014, 14:40
 

Name: Kriva u prostoru 

Coordinates: Spherical

Function

a(u,v,t)= cos(v)+u

b(u,v,t)=sin(u)

R(u,v,t)=v

 

Domain of variables

Min U: 1 Max U:10 Steps:100

Min V:2 Max V: 10 Steps: 50


Nutzerbild von Sonja Pesic
Odgovor: Zadatak 02 - Krive u prostoru
von Sonja Pesic - Sonntag, 4. Mai 2014, 14:46
 

Program - 3D Grapher

Coordinate - Cylindrical

Funkcija - 
a (u,v,t) = v*cos(u)*5
R (u,v,t) = sin(v)*5+cos(t)
Z (u,v,t) = t*3+sin(u)

Domain of variables -

Min U:-1; Max U:1; Steps:20
MinV:-1; Max V:1; Steps: 20

Nutzerbild von Lea Pavlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Lea Pavlovic - Sonntag, 4. Mai 2014, 15:10
 

3d grapher


Nutzerbild von Ana Banovic
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Banovic - Sonntag, 4. Mai 2014, 15:17
 

a(u,v,t):  v*(sin(u))^3*v
R(u,v,t): (sin(v))^2.5*v
Z(u,v,t): (sin(u))^3

MinU: -4 MinV: -4  MaxU: 2   MaxV:2
Steps:120
Steps:100
Coordinate: Cylindrical


Nutzerbild von Simona Tajic
Odgovor: Zadatak 02 - Krive u prostoru
von Simona Tajic - Sonntag, 4. Mai 2014, 15:19
 

3D Grapher

Cylindrical

a=5*sin(3*u)*cos(v)

R=cos(v)

Z=5*sin(3*u)

U: [-10, 10] (256)

V: [-10, 10] (36)


Nutzerbild von Ivana Vajda
Odgovor: Zadatak 02 - Krive u prostoru
von Ivana Vajda - Sonntag, 4. Mai 2014, 15:42
 

Program: 3D Grapher

Coordinates: Spherical

a(u,v,t)= 2*v*(cos(u))^2;

b(u,v,t)=0.5*u*(sin(v))^2;

R(u,v,t)=2*v^2+0.5*u^2+0.8*t^2;

Domain of variables:

min U:-2, max U:2, steps:50;

min V:-2, max V:2, steps:50.


Nutzerbild von Iva Dugandzija
Re: Zadatak 02 - Krive u prostoru
von Iva Dugandzija - Sonntag, 4. Mai 2014, 16:22
 

3D Graph


Nutzerbild von Natalija Stojic
Odgovor: Zadatak 02 - Krive u prostoru
von Natalija Stojic - Sonntag, 4. Mai 2014, 16:23
 

Program: 3D Grapher

Coordinates: Spherical

Function:

a(u,v,t)=0.1*u*sin(u)

b(u,v,t)=0.1*v*cos(v)

R(u,v,t)=0.1*u*v

Domain of variables:

Min U:-10; Max U:10; Steps:100

Min V:-10; Max V:10; Steps:100


Nutzerbild von Zorana Pešić
Odgovor: Zadatak 02 - Krive u prostoru
von Zorana Pešić - Sonntag, 4. Mai 2014, 16:37
 

Za ovaj zadatak kostila sam program 3DGrapher.



Nutzerbild von Milica Zukanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Zukanovic - Sonntag, 4. Mai 2014, 17:07
 

3d grapher


Nutzerbild von Tamara Nešić
Odgovor: Zadatak 02 - Krive u prostoru
von Tamara Nešić - Sonntag, 4. Mai 2014, 17:42
 

Program: 3D Grapher

coordinates: cartesian
x=u*cos(u)
y=sin(u)
z=u^3
u:[-10,10] steps=60

coordinates: cartesian
x=cos(u)^2
y=sin(u)
z=u^2
u:[-5,5] steps=60

coordinates: cylindrical
a=u
R=sin(u)
Z=u
u:[-10,10] steps=60

coordinates: spherical
a=u
b=u
R=5*cos(u)
u:[-5,5] steps=100


Nutzerbild von Uros Markovic
Odgovor: Zadatak 02 - Krive u prostoru
von Uros Markovic - Sonntag, 4. Mai 2014, 18:06
 

Coordinates: Cartesian

slika sa dva prikaza i parametrima.


Nutzerbild von Tamara Vuckovic
Odgovor: Zadatak 02 - Krive u prostoru
von Tamara Vuckovic - Sonntag, 4. Mai 2014, 18:11
 


a = 6*u
b = 6*v
R = 6
spherical

x = sin(u) + cos(v)
y = cos(v) + sin(v)
z = u+v
cartesian

 


Nutzerbild von Marijana Filipovic
Odgovor: Zadatak 02 - Krive u prostoru
von Marijana Filipovic - Sonntag, 4. Mai 2014, 18:19
 

3D Grapher

Coordinates: Spherical

Function

a(u,v,t)=0.1*cos(u)  b(u,v,t)=0.2*sin(u)  R(u,v,t)=0.01*u^3

a(u,v,t)=0.2*cos(u)  b(u,v,t)=0.5*sin(u)  R(u,v,t)=0.01*u^3

a(u,v,t)=0.1*cos(u)  b(u,v,t)=0.4*sin(u)  R(u,v,t)=0.01*u^3

a(u.v.t)=0.2*cos(u)  b(u,v,t)=0.1*sin(u)  R(u,v,t)=0.01*u^3

a(u,v,t)=0.3*cos(u)  b(u,v,t)=0.6*sin(u)  R(u,v,t)=0.01*u^3

a(u,v,t)=0.3*cos(u)  b(u,v,t)=0.1*sin(u)  R(u,v,t)=-0.02*u^3

a(u,v,t)=0.2*cos(u)  b(u,v,t)=0.3*sin(u)  R(u,v,t)=-0.02*u^3

a(u,v,t)=0.4*cos(u)  b(u,v,t)=0.2*sin(u)  R(u,v,t)=-0.02*u^3

a(u,v,t)=0.1*cos(u)  b(u,v,t)=0.4*sin(u)  R(u,v,t)=-0.02*u^3

a(u,v,t)=0.5*cos(u)  b(u,v,t)=0.3*sin(u)  R(u,v,t)=-0.02*u^3

Min U: -10 Max U: 10 Steps: 100

Min V: -10  Max V: 10 Steps: 100

 

 

 

 

 

 

 

 


Nutzerbild von Darija Raseta
Odgovor: Zadatak 02 - Krive u prostoru
von Darija Raseta - Sonntag, 4. Mai 2014, 18:30
 

3D Grapher

Coordinates: Spherical

Function:

a(u,v,t)=10*cos(u)

b(u,v,t)=cos(u)

R(u,v,t)=0.5*u

minU: 2   maxU: 10  Steps:100

minV: 2   maxV: 10  Steps: 100


Nutzerbild von Mihailo Simic
Odgovor: Zadatak 02 - Krive u prostoru
von Mihailo Simic - Sonntag, 4. Mai 2014, 18:42
 

Korisceni program: 3d grapher

X( u,v,t)=4*v*sin(3*v)

Y (u,v,t)= 3*v*cos*(v)*2

Z ( u,v,t)= 3*v

Domain of variables

min U=-10; max U=10

min V=-10; max V=10

steps: 60

steps: 60


Nutzerbild von Milana Petković
Odgovor: Zadatak 02 - Krive u prostoru
von Milana Petković - Sonntag, 4. Mai 2014, 18:50
 

Coordinates: Catesian

X(u,v,t)=3*v*cos(4*v)

Y(u,v,t)=3*v*sin(u)*3

Z(u,v,t)=3*v

Domain of variables:

Min U= -10    Max U= 10    Steps= 40

Min V= -10    Max U= 10    Steps= 40


Nutzerbild von Nikola Fidanov
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Fidanov - Sonntag, 4. Mai 2014, 19:43
 

Coordinates: Cartesian

Function:

X(u,v,t)=1.5*v*sin(3*u)-3*v

Y(u,v,t)=4*v*cos(u)*2

Z(u,v,t)=4*v

Domain of variables:

Min U: -10     Max U: 10     Steps: 60

Min V: -10     Max V: 10     Steps: 60


Nutzerbild von Vesna Mihajlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Vesna Mihajlovic - Sonntag, 4. Mai 2014, 21:11
 

3D grapher

Coordinates:cylindrical

Function:

a=4v*sin(2u)*2

R=4*cos(v)

Z=0.1*u*v

 Domain of variables

Min u:-10   Max u:6   steps:30

Min v:-1     Max v:5    steps:30


Nutzerbild von Vasilije Glavas
Odgovor: Zadatak 02 - Krive u prostoru
von Vasilije Glavas - Sonntag, 4. Mai 2014, 21:08
 

3D grapher

4.2*sin(v)^5+cos(2*u)

sin(v)*2*u

cos(2*u)

-5; 25; 250

-5; 25; 250


Nutzerbild von Mira Maletkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Mira Maletkovic - Sonntag, 4. Mai 2014, 21:52
 

3D Grapher

X=sin(v)*cos(v)Y=sin(v)Z=cos(v)
X=2*sin(v)*cos(v)Y=sin(v)Z=2*cos(v)
X=3*sin(v)*cos(v)Y=sin(v)Z=3*cos(v)
X=4*sin(v)*cos(v)Y=sin(v)Z=4*cos(v)
X=5*sin(v)*cos(v)Y=sin(v)Z=5*cos(v)
X=6*sin(v)*cos(v)Y=sin(v)Z=6*cos(v)
X=7*sin(v)*cos(v)Y=sin(v)Z=7*cos(v)
X=8*sin(v)*cos(v)Y=sin(v)Z=8*cos(v)

Nutzerbild von Nikola Bezarević
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Bezarević - Sonntag, 4. Mai 2014, 22:24
 

3D Grapher

coordinates: cartesian

X(u,v,t) = 3*sin(u)-cos(u)*2

Y(u,v,t) = 2*cos(u)-sin(u)*2

Z(u,v,t) = 2*cos(u)*sin(u)*2

min U: -50    maxU: 50     steps: 20

min V: 50     maxV: 50     steps: 20


Nutzerbild von Jelena Damjanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Damjanovic - Sonntag, 4. Mai 2014, 22:27
 

3D Grapher

coordinates:cylindrical

Funcrion:

a(u,v,t)=2*v*cos(u)

R(u,v,t)=u*sin(v)

Z(u.v.t)=u*v

Min U: -3

MacU: 10

Steps: 100

Min V: -3

Max V: 10

Steps: 100


Nutzerbild von Deana Gvozdenovic
Odgovor: Zadatak 02 - Krive u prostoru
von Deana Gvozdenovic - Sonntag, 4. Mai 2014, 22:29
 

3D Grapher

Coordinates: Spherical

Function

a(u,v,t)=sin(u)

b(u,v,t)=cos(u)+v

R(u,v,t)=0.4*u

Domain of variables

Min U: -2 Max U: 10 Steps: 40

Min V: -6 Max V: 24 Steps: 40


Nutzerbild von Stefan Milosavljevic
Odgovor: Zadatak 02 - Krive u prostoru
von Stefan Milosavljevic - Sonntag, 4. Mai 2014, 22:55
 

X: [-10,10]
Y: [-10,10]
Z: [-10,10]
T: [0,0] (0)
Selected:
New Graph (1/1)
Cartesian
X=v*cos(2*u)
Y=v*sin(u)
Z=1.5*u
U: [-10,10] (90)
V: [-10,10] (15)


Nutzerbild von Iva Njunjic
Odgovor: Zadatak 02 - Krive u prostoru
von Iva Njunjic - Montag, 5. Mai 2014, 00:04
 

3Dgrapher



Nutzerbild von Kristina Cvetkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Kristina Cvetkovic - Montag, 5. Mai 2014, 00:03
 

zadatak 02



Nutzerbild von Luka Krznarić
Odgovor: Zadatak 02 - Krive u prostoru
von Luka Krznarić - Montag, 5. Mai 2014, 00:05
 

3D Grapher 

a(u,v,t)= 7*u

R(u,v,t)=3*v

Z(u,v,t)=10*v

min U: -20       max U:10             Steps:300

min V:-20        max V: 10            Steps:100

 

 


Nutzerbild von Nikola Miletic
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Miletic - Montag, 5. Mai 2014, 00:29
 

3D Graph

 

Coordinates: Cartesian

X(u,v,t)=0.2*cos(u)  Y(u,v,t)=0.2*cos(u)  Z(u,v,t)=0.05*u^3  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=2.2*cos(u)  Y(u,v,t)=2.2*cos(u)  Z(u,v,t)=0.05*u^3  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=4.2*cos(u)  Y(u,v,t)=4.2*cos(u)  Z(u,v,t)=0.05*u^3  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=6.2*cos(u)  Y(u,v,t)=6.2*cos(u)  Z(u,v,t)=0.05*u^3  MinU:-7  MaxU:7  Steps:100

 X(u,v,t)=1*cos(u)  Y(u,v,t)=1*cos(u)  Z(u,v,t)=0.5*u^2  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=3*cos(u)  Y(u,v,t)=3*cos(u)  Z(u,v,t)=0.5*u^2  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=5*cos(u)  Y(u,v,t)=5*cos(u)  Z(u,v,t)=0.5*u^2  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=7*cos(u)  Y(u,v,t)=7*cos(u)  Z(u,v,t)=0.5*u^2  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=2*cos(u)  Y(u,v,t)=2*cos(u)  Z(u,v,t)=3*cos(u)  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=4*cos(u)  Y(u,v,t)=4*cos(u)  Z(u,v,t)=3*cos(u)  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=6*cos(u)  Y(u,v,t)=6*cos(u)  Z(u,v,t)=3*cos(u)  MinU:-7  MaxU:7  Steps:100

X(u,v,t)=8*cos(u)  Y(u,v,t)=8*cos(u)  Z(u,v,t)=3*cos(u)  MinU:-7  MaxU:7  Steps:100

 


Nutzerbild von Filip Vasiljevic
Odgovor: Zadatak 02 - Krive u prostoru
von Filip Vasiljevic - Montag, 5. Mai 2014, 00:34
 

Program: 3D Grapher

Coordinates: Cartesian

x = 3*sin(4*u)-cos(v)

y = cos(u)

z = sin(2*u)

MinU: -10 MaxU:  10  Steps 50

MinV:  -10 MaxV: 10  Steps 30


Nutzerbild von Ruzica Muravljov
Odgovor: Zadatak 02 - Krive u prostoru
von Ruzica Muravljov - Montag, 5. Mai 2014, 09:13
 

261


Nutzerbild von Olga Radović
Odgovor: Zadatak 02 - Krive u prostoru
von Olga Radović - Montag, 5. Mai 2014, 11:28
 

program: 3D Grapher

coordinates: spherical

function:
a(u,v,t)=v*(sin(u))^4
b(u,v,t)=u*(sin(v))^3
R(u,v,t)=u^3+v^3

domain of variables:
min U: -2        max U: 1       steps: 70
min V: -2        max V: 1       steps: 70


Nutzerbild von Zvonimir Mance
Odgovor: Zadatak 02 - Krive u prostoru
von Zvonimir Mance - Montag, 5. Mai 2014, 11:48
 

3D Grapher

koordinate i funkcije su date u grafičkom prikazu


Nutzerbild von Milena Andric
Odgovor: Zadatak 02 - Krive u prostoru
von Milena Andric - Montag, 5. Mai 2014, 12:55
 

3D Grapher

Coordinates: Cylindrical

a (u,v,t): 6*u

R (u,v,t): 4*v

Z (u,v,t): 12*v

Min U: -40           Max U: 40             Steps: 200

Min V: -20           Max V: 20             Steps: 150

X, Y, Z= 1


Nutzerbild von SLOBODAN VULIN
Odgovor: Zadatak 02 - Krive u prostoru
von SLOBODAN VULIN - Montag, 5. Mai 2014, 14:37
 

3D Grapher

x = 10*cos(u) 
y = 1*sin(v)
z = v*cos(u)

Min U -10,      Max U 10     steps   40

Min V -10       Max v 10      steps    40

 


Nutzerbild von Bojana Sicovic
Odgovor: Zadatak 02 - Krive u prostoru
von Bojana Sicovic - Montag, 5. Mai 2014, 17:08
 

program - 3D grapher

coordinates - Spherical

a(u,v,t)- v*(cos(u))^2+2

b(u,v,t)- u*(sin(v))^5+3

R(u,v,t)- u^5+v+t^3

min U- -1,  min V- -1

max U- 1,   max V- 1

steps- 80,  steps- 80

 


Nutzerbild von Ognjen Graovac
Odgovor: Zadatak 02 - Krive u prostoru
von Ognjen Graovac - Montag, 5. Mai 2014, 17:16
 

Program: 3D Grapher

Coordinate: Cylindrical

Function:

a(u,v,t)=sin(u)*u*cos(v)

R(u,v,t)=4*sin(u)*sin(v)*cos(t)

Z(u,v,t)=5*u

Domain of variables:

Min U:-10; Max U:5; Steps: 300

MinV:-10; Max V:5; Steps: 300

 


Nutzerbild von Dina Stefanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Dina Stefanovic - Montag, 5. Mai 2014, 17:22
 

Program: 3D Grapher

Coordinate: Cartesian

Function:

X(u,v,t)=7*sin(u)*sin(v)*cos(t)

Y(u,v,t)=cos(u)*sin(v)

Z(u,v,t)=5*v

Domain of variables:

Min U:-10; Max U:7; Steps: 200

MinV:-11; Max V:5; Steps: 200


Nutzerbild von Vanja Vujanović
Odgovor: Zadatak 02 - Krive u prostoru
von Vanja Vujanović - Montag, 5. Mai 2014, 18:16
 

Program: 3D Grapher



Nutzerbild von Nikola Misic
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Misic - Montag, 5. Mai 2014, 18:53
 

zadatak  - krive u prostoru 



Nutzerbild von Jelena Marjanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Marjanovic - Montag, 5. Mai 2014, 18:55
 

Coordinates: Special

Funkcije:

X(u,v,t)=v*(sin(u))^3*u

Y(u,v,t)=u*(sin(v))^6*u

Z(u,v,t)=u^3+u^3

Domen:

U:(-2,1.5)  ( 90 )

V:(-2, 1.5)  (90 )

 


Nutzerbild von Tea Grabovica
Odgovor: Zadatak 02 - Krive u prostoru
von Tea Grabovica - Montag, 5. Mai 2014, 19:02
 

3D Grapher

Spherical

a=v*(sin(u))^2

b=u*(sin(v))^3

R=(v^3-u^2)^3

U: [-3,3] (300)

V: [-3,3] (300)


Nutzerbild von stefan slavic
Odgovor: Zadatak 02 - Krive u prostoru
von stefan slavic - Montag, 5. Mai 2014, 19:05
 

3D Grapher

a=1*u

b=cos(u)+v

R=0.1*u

U: [-10,1] (50)

V: [-10,10] (50)


Nutzerbild von Samra Jonovic
Odgovor: Zadatak 02 - Krive u prostoru
von Samra Jonovic - Montag, 5. Mai 2014, 19:23
 

 


Nutzerbild von Suzana Jeremic
Odgovor: Zadatak 02 - Krive u prostoru
von Suzana Jeremic - Montag, 5. Mai 2014, 19:42
 

3D Grapher



Nutzerbild von Aleksa Babic
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksa Babic - Montag, 5. Mai 2014, 20:29
 

Program: 3D Grapher

Coordinates: Spherical

a: v*(sin(u))^3

b: u*(sin(v))^3

R: u^3+v^3

Min U: -2 Max U: 2    Steps: 60

Min V: -2 Max V: 2    Steps: 60


Nutzerbild von Vanja Spasenovic
Odgovor: Zadatak 02 - Krive u prostoru
von Vanja Spasenovic - Montag, 5. Mai 2014, 19:55
 

Koriscen program: 3D Grapher

Coordinates: Spherical

a: v*(sin(u))^3

b: u*(sin(v))^3

R: u^3+v^3

Min U: -2 Max U: 2 Steps: 60

Min V: -2 Max V: 2 Steps: 60


Nutzerbild von Danica Todorovic
Odgovor: Zadatak 02 - Krive u prostoru
von Danica Todorovic - Montag, 5. Mai 2014, 19:58
 

3D Grapher

Coordinates : Cylindrical

Function :

a=(10-2)*cos(u)

R=(2-10)*sin(u)

Z=(u)/6*(10-2)

Domain of variables :

U: [-10,10] (1000)

V: [-10,10] (1000)


Nutzerbild von Milica Stojanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Stojanovic - Montag, 5. Mai 2014, 20:34
 

3D Grapher

Coordinates: Spherical

Function:

a(u,v,t)= -0.1*u*sin(u)

b(u,v,t)= 0.1*v*cos(v)

R(u,v,t)= 0.1*u*0.1*v*6

Min U:-8    Max U:8    Steps:60

Min V:-6    Max V:6    Steps:30


Nutzerbild von Tanja Tovilovic
Odgovor: Zadatak 02 - Krive u prostoru
von Tanja Tovilovic - Montag, 5. Mai 2014, 20:49
 

3D Grapher

Coordinates: Spherical

Function: a(u,v,t)= v*(cos(u))^2+1

                b(u,v,t)= u*(sin(v))*4+3

                R(u,v,t)= u^3+v+t^3^v^1

Domain of variables: minU: -1 maxU: 1     Steps: 100

                                 minV: -1 maxV: 3     Steps: 100


Nutzerbild von Aleksandra Maksimovic
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandra Maksimovic - Montag, 5. Mai 2014, 20:58
 

Program: 3D Grapher

1. Coordinate: Spherical

Function:

a(u,v,t)=15*cos(t)*sin(u)*6

b(u,v,t)=8*cos(u)

R(u,v,t)=7*sin(u)

Domain of variables:

Min U:-10; Max U:10; Steps: 50

MinV:-10; Max V:10; Steps:20

2.Coordinate: Spehrical

Function:

a(u,v,t)=15*cos(t)*sin(u)*6

R(u,v,t)=7*sin(u)

Z(u,v,t)=8*cos(u)

Domain of variables:

Min U:-10; Max U:10; Steps:70

MinV:-10; Max V:10; Steps: 20

3.Coordinate: Spehrical

Function:

a(u,v,t)=15*cos(t)*sin(u)*6

R(u,v,t)=8*cos(u)*5

Z(u,v,t)=7*sin(u)

Domain of variables:

Min U:-10; Max U:10; Steps:50

MinV:-10; Max V:10; Steps: 30


Nutzerbild von Dunja Matic
Odgovor: Zadatak 02 - Krive u prostoru
von Dunja Matic - Montag, 5. Mai 2014, 21:10
 

Program 3D Grapher



Nutzerbild von Marko Negovanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Marko Negovanovic - Montag, 5. Mai 2014, 21:12
 

Coordinates: Cartesian

X (u,v,t) = 4*cos(u)

Y (u,v,t) = 3*v*sin(u)*3

Z (u,v,t) = 3*v*v*v*v*sin(u)

Domain of variables:

Min U : -10 Max U : 10 Steps: 40

Min V : -10 Max V : 10 Steps: 40

Coordinates: Cartesian

X (u,v,t) = 9*cos(u)
 
Y (u,v,t) = 9*v*sin(u)*4

Z (u,v,t) = 3*v*v*v*sin(u)

Domain of variables:

Min U : -10 Max U : 10 Steps: 60

Min V : -10 Max V : 10 Steps: 60


Nutzerbild von Andrea Todorovski
Re: Zadatak 02 - Krive u prostoru
von Andrea Todorovski - Montag, 5. Mai 2014, 21:22
 

program 3D Grapher

X(u,v,t)=2*v*sin(3*u)-3*v

Y(u,v,t)=3*v*cos(v)*2

Z(u,v,t)=u*v

U:  min=-20;  max=20    steps=90

V:  min=-20;  max=20    steps=90


Nutzerbild von Luka Lukac
Odgovor: Zadatak 02 - Krive u prostoru
von Luka Lukac - Montag, 5. Mai 2014, 21:36
 

Program 3D Grapher
Coordinates: Cartesian
X(u,v,t)=2*cos(u); Y(u,v,t)=2*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 300
X(u,v,t)=2.7*cos(u); Y(u,v,t)=2.7*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 300
X(u,v,t)=2.9*cos(u); Y(u,v,t)=2.9*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 300
X(u,v,t)=3.1*cos(u); Y(u,v,t)=3.1*sin(u); Z(u,v,t)=0.01*u^3
MinU/V: -10; MaxU/V: 10; Steps: 300


X(u,v,t)=cos(u); Y(u,v,t)=sin(u); Z(u,v,t)=0.7*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=-1.5*cos(u); Y(u,v,t)=-1.5*sin(u); Z(u,v,t)=0.7*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=1.7*cos(u); Y(u,v,t)=1.7*sin(u); Z(u,v,t)=0.7*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=-2.2*cos(u); Y(u,v,t)=-2.2*sin(u); Z(u,v,t)=-0.7*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=2.4*cos(u); Y(u,v,t)=2.4*sin(u); Z(u,v,t)=0.7*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=-2.9*cos(u); Y(u,v,t)=-2.9*sin(u); Z(u,v,t)=0.7*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150

X(u,v,t)=3*cos(u); Y(u,v,t)=3*sin(u); Z(u,v,t)=0.5*u^4;
MinU/V: -3; MaxU/V: 3; Steps: 200
X(u,v,t)=5*cos(u); Y(u,v,t)=5*sin(u); Z(u,v,t)=0.5*u^4;
MinU/V: -5; MaxU/V: 5; Steps: 200
X(u,v,t)=-7*cos(u); Y(u,v,t)=-7*sin(u); Z(u,v,t)=-0.5*u^4;
MinU/V: -7; MaxU/V: 7; Steps: 200
X(u,v,t)=-9*cos(u); Y(u,v,t)=-9*sin(u); Z(u,v,t)=-0.5*u^4;
MinU/V: -9; MaxU/V: 9; Steps: 200


Nutzerbild von vida nedeljkovic
Odgovor: Zadatak 02 - Krive u prostoru
von vida nedeljkovic - Montag, 5. Mai 2014, 21:46
 

X(u,v,t)=v*(sin(u))^2
Y(u,v,t,)=u*(sin(v))^5

Z(u,v,t)=u^3+v^6

min U=-2 max U=2 steps=100

min V=-2 max V= steps=100

3d grapsher


Nutzerbild von Milena Ristic
Odgovor: Zadatak 02 - Krive u prostoru
von Milena Ristic - Montag, 5. Mai 2014, 22:02
 

3D Grapher

x=sin(t)-2*cos(u)

y=sin(v)*cos(v)

z=sin (v)+cos (v)

u:[-10,10]*(100)

v:[-10,10]*(1)


Nutzerbild von Ana Kordic
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Kordic - Montag, 5. Mai 2014, 21:52
 

3D Grapher.

 

X(u,v,t)= 0.1*sin(u)    Y(u,v,t)= 0.2*cos(u)    Z(u,v,t)= 0.3*u^3

X(u,v,t)= 0.2*sin(u)    Y(u,v,t)= 0.3*cos(u)    Z(u,v,t)= 0.4*u^3

X(u,v,t)= 0.3*sin(u)    Y(u,v,t)= 0.4*cos(u)    Z(u,v,t)= 0.5*u^3

X(u,v,t)= 0.4*sin(u)    Y(u,v,t)= 0.5*cos(u)    Z(u,v,t)= 0.6*u^3

X(u,v,t)= 0.5*sin(u)    Y(u,v,t)= 0.6*cos(u)    Z(u,v,t)= 0.7*u^3

X(u,v,t)= 0.6*sin(u)    Y(u,v,t)= 0.7*cos(u)    Z(u,v,t)= 0.8*u^3

X(u,v,t)= 0.7*sin(u)    Y(u,v,t)= 0.8*cos(u)    Z(u,v,t)= 0.9*u^3

X(u,v,t)= 0.8*sin(u)    Y(u,v,t)= 0.9*cos(u)    Z(u,v,t)= 1*u^3

X(u,v,t)= 0.9*sin(u)    Y(u,v,t)= 1*cos(u)       Z(u,v,t)= 1.1*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 1.2*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.21*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.23*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.25*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.27*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.29*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.31*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.33*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.35*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.37*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.39*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.41*u^3

X(u,v,t)= 1*sin(u)       Y(u,v,t)= 1.1*cos(u)    Z(u,v,t)= 0.43*u^3

 

 

minU: -10,

maxU: 10,

Steps: 100


Nutzerbild von Ana Antonijevic
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Antonijevic - Montag, 5. Mai 2014, 21:57
 

Radjeno u 3D Math Explorer-u

fx = C*cos(a)*sin(sin(b)) 
fy = C*sin(a)*sin(sin(b)) 
fz = C*cos(sin(b)) 
C=2*a


Nutzerbild von Zorana Pavlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Zorana Pavlovic - Montag, 5. Mai 2014, 21:59
 

3D Grapher

Nutzerbild von Luka Pavlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Luka Pavlovic - Montag, 5. Mai 2014, 22:00
 

3D Grapher



Nutzerbild von Katarina Jovicic
Odgovor: Zadatak 02 - Krive u prostoru
von Katarina Jovicic - Montag, 5. Mai 2014, 22:01
 

Korisceni program - 3D Grapher

Coordinates: Cartesian

X (u,v,t) = 5*v*cos(2*u)
 
Y (u,v,t) = 5*v* tan(3*u)

Z (u,v,t) = 2*v

Domain of variables:

Min U : -10 Max U : 10 Steps: 30

Min V : -10 Max V : 10 Steps: 60


Nutzerbild von Miloš Mandić
Odgovor: Zadatak 02 - Krive u prostoru
von Miloš Mandić - Montag, 5. Mai 2014, 22:14
 

program: 3d graph

X: [-10,10]
Y: [-10,10]
Z: [-10,10]
T: [0,0] (0)
Selected:
New Graph (1/1)
Cartesian
X=3*v*cos(3*u)
Y=5*v* sin(u)*3
Z=3*v
U: [-10,10] (50)
V: [-10,10] (60)


Nutzerbild von Sara Karać
Odgovor: Zadatak 02 - Krive u prostoru
von Sara Karać - Montag, 5. Mai 2014, 22:28
 

Krive u prostoru



Nutzerbild von Natalija Rajovic
Odgovor: Zadatak 02 - Krive u prostoru
von Natalija Rajovic - Montag, 5. Mai 2014, 22:53
 

Program: 3D Grapher



Nutzerbild von Ana Marija Vasić
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Marija Vasić - Montag, 5. Mai 2014, 23:11
 

3D grapher



Nutzerbild von Jelena Kostic
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Kostic - Montag, 5. Mai 2014, 23:22
 

3D Grapher

Coordinates: Spherical
Function:
a(u,v,t)= cos(u)*4
b(u,v,t)= max(t;+5)
R(u,v,t)= log(v)*3

Min U: -10    Max U: 20      Steps: 100
Min V: -10    Max V: 20       Steps: 100


Nutzerbild von Rajko Milenkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Rajko Milenkovic - Montag, 5. Mai 2014, 23:29
 

Program: 3D Grapher

 



Nutzerbild von Katarina Djurovic
Odgovor: Zadatak 02 - Krive u prostoru
von Katarina Djurovic - Montag, 5. Mai 2014, 23:45
 

3D grapher



Nutzerbild von Irina Petkovic
(
von Irina Petkovic - Montag, 5. Mai 2014, 23:47
 

x(u,v)= c3*cos(u)+(c2(c8cos(u)c5sin(v)

y(u,v)=c3sin(u)*(c2*(c8cos(u)c4+sin(v)

z(u,v)=c3sin(sin(3*u/2)+(c2sin(v)c7)c8)

c1=10

c2=2

c3=ca(cos*(3*u/2)+3/4

c4=c3sin(u)3c1sin(3u2)cos

R(u,v)=(sin(u)+1)*50

G(u,v)=(cos(u)+1)*50

B(u,v)=(sin(u,v)+1)*50

Z rotate 325

Scale 95%

 


Nutzerbild von Milan Milenkovic
Odgovor: Zadatak 02 - Krive u prostoru napisao Milan Milenkovic
von Milan Milenkovic - Montag, 5. Mai 2014, 23:48
 

program SD Grapher

Cylindrical

a(u,v,t)=v

R(u,v,t)=u

Z(u,v,t)=t

minu=-40,maxU=180,steps=200

minV=-15,maxV=-10,steps=20

 


Nutzerbild von Milica Pavic
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Pavic - Montag, 5. Mai 2014, 23:49
 

3D Grapher

Coordinates: Spherical

Function

a(u,v,t)=sin(u)

b(u,v,t)=cos(u)+v

R(u,v,t)=0.2*u

Domain of variables

Min U: -2 Max U: 10 Steps: 40

Min V: -6 Max V: 24 Steps: 40


Nutzerbild von Veljko Divac
Odgovor: Zadatak 02 - Krive u prostoru
von Veljko Divac - Montag, 5. Mai 2014, 23:54
 


3D grapher
spherical

a=cos(8*u)
R=sin(2*v)
Z=cos(2*v)sin(4*t)
U:[-10,10] (20)
V:[-10,10](20)


Nutzerbild von Ljubica Djordjevic
Odgovor: Zadatak 02 - Krive u prostoru
von Ljubica Djordjevic - Dienstag, 6. Mai 2014, 02:53
 

3D grapher
spherical

a=cos(u)
R=sin(u+v)
Z=cos(2*v)
U:[-10,10] (20)
V:[-10,10](20)

 


Nutzerbild von Ivana Milovanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Ivana Milovanovic - Montag, 5. Mai 2014, 23:49
 

Program: 3D Grapher



Nutzerbild von Jovana Kovacevic
Odgovor: Zadatak 02 - Krive u prostoru
von Jovana Kovacevic - Dienstag, 6. Mai 2014, 00:11
 

3D Grapher



Nutzerbild von Tijana Stojanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Tijana Stojanovic - Dienstag, 6. Mai 2014, 00:13
 

3D Grapher


Nutzerbild von Tina Urosevic
Odgovor: Zadatak 02 - Krive u prostoru
von Tina Urosevic - Dienstag, 6. Mai 2014, 00:27
 

 ..


Nutzerbild von Ella Bisak
Odgovor: Zadatak 02 - Krive u prostoru
von Ella Bisak - Dienstag, 6. Mai 2014, 00:46
 

3D Grapher

 

Coordinates: Spherical

 

Function:

a(u,v,t)= cos(u)+4*u

b(u,v,t)= cos(u)+v*2

R(u,v,t)= 10*sin(u)

 

Domain of variables:

Min U: 7          Max U: -6          Steps: 3

Min V: -1         Max V: 16         Steps: 120

 


Nutzerbild von Luka Terzic
Odgovor: Zadatak 02 - Krive u prostoru
von Luka Terzic - Dienstag, 6. Mai 2014, 01:33
 

3d Grapher

Coordinates: Cartesian

Function

X(u,v,t)=8*cos(u)+4*cos(u)
Y(u,v,t)=2*sin(u)+2*sin(u)
Z(u,v,t)=2*sin(u)

X(u,v,t)=3*cos(u)+3*cos(u)
Y(u,v,t)=4*sin(u)+4*sin(u)
Z(u,v,t)=sin(u)

X(u,v,t)=1*cos(u)+1*cos(u)
Y(u,v,t)=2*sin(u)+2*sin(u)
Z(u,v,t)=-1*sin(u)

X(u,v,t)=-2*cos(u)+-2*cos(u)
Y(u,v,t)=sin(u)+sin(u)
Z(u,v,t)=-4*sin(u)

Min U: -10 Max U: 10 Steps: 20
Min V: -10 Max V: 10 Steps: 20


Nutzerbild von Katarina Despotovic
Odgovor: Zadatak 02 - Krive u prostoru
von Katarina Despotovic - Dienstag, 6. Mai 2014, 11:02
 

a=sin(t)-2*cos(u)

b=sin(v)

R=v

min U:-5 max U:10 steps:15

min V:-10 max V:8 steps:28

a=sin(t)-cos(u)

b=sin(v)

R=v

min U:-5

max U:10 steps:15

min V:-10

max V:8 steps:28

a=sin(t)-2*cos(u)

b=sin(v)

R=u

minU:-5

max U:10 steps:15

min V:-10 max V:8 steps:28

3D grapher


Nutzerbild von Jovana Periz
Odgovor: Zadatak 02 - Krive u prostoru
von Jovana Periz - Dienstag, 6. Mai 2014, 12:49
 

coordinates: spherical

a(u,v,t) 3*v*cos(2*u)

b(u,v,t) 3*v*sin(3*u)

c(u,v,t) 3*v*cos(4*u)

min u: -10 max u: 10 steps:40

min v: -10 max v: 10 steps: 40


Nutzerbild von Djordje Grujicic
Odgovor: Zadatak 02 - Krive u prostoru
von Djordje Grujicic - Dienstag, 6. Mai 2014, 12:53
 

Spherical

a=u

b=sin(v-u)

R=v

Min U -10

Max U 10

Steps 20

Min V -10

Max V 10

Steps 20


Nutzerbild von Mirjana Mihajlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Mirjana Mihajlovic - Dienstag, 6. Mai 2014, 12:56
 

3dgrapher


Nutzerbild von Jovan Kolaric
Odgovor: Zadatak 02 - Krive u prostoru
von Jovan Kolaric - Dienstag, 6. Mai 2014, 13:00
 

3D graph


Nutzerbild von Nikola Todorovic
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Todorovic - Dienstag, 6. Mai 2014, 13:01
 

a=sin(v)

b=v-u

R=v


Nutzerbild von Ana Maria Atanaskovic
Odgovor: Zadatak 02 - Krive u prostoru
von Ana Maria Atanaskovic - Dienstag, 6. Mai 2014, 13:06
 

Spherical

a=u

b=sin(v-t)

R=v-u

MinU:-10 MaxU:10 Steps:20

MinV:-10 MaxV:10 Steps:20


Nutzerbild von Mila Stojanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Mila Stojanovic - Dienstag, 6. Mai 2014, 19:24
 

Program: 3D Grapher

1. Coordinate: Spherical

Function:

a(u,v,t)=cos(v)

b(u,v,t)=t

R(u,v,t)=sin(u)

Domain of variables:

Min U:20; Max U:1; Steps: 20

MinV:5; Max V:1; Steps: 20



Nutzerbild von Dragan Petrovic
Odgovor: Zadatak 02 - Krive u prostoru
von Dragan Petrovic - Dienstag, 6. Mai 2014, 20:25
 

3D_grapher

CYLINDRICAL (lucie)

a(u,v,t)= (sin(u))*3
R(u,v,t)= cos(v)+u
Z(u,v,t)= sin(v)+u

min U = -4 max U = 4 steps = 130
min v = -4 max v = 4 steps = 130

 

 

SPHERICAL (catra)

a(u,v,t)= (sin(u))*3
R(u,v,t)= cos(t)*0.7
Z(u,v,t)= cos(u)*8.5

min U = -20 max U = 20 steps = 200
min v = -20 max v = 20 steps = 200

 

 

CARTESIAN (glacia)

a(u,v,t)= u
R(u,v,t)= sin(u-v)*cos(u)*5
Z(u,v,t)= v

min U = -4 max U = 10 steps = 50
min v = -4 max v = 10 steps = 65


Nutzerbild von marija zivic
Odgovor: Zadatak 02 - Krive u prostoru
von marija zivic - Dienstag, 6. Mai 2014, 20:22
 

krive u prostoru



Nutzerbild von Jovana Vidakovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jovana Vidakovic - Dienstag, 6. Mai 2014, 20:46
 

fx:5*(1+cos(b))+b
fy:5*cos(a)*(1-sin(b))
fz:5*sin(a)*(1-sin(b))*(1+sin(b))


Nutzerbild von Milica Ristović
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Ristović - Dienstag, 6. Mai 2014, 20:49
 

Graficki prikazane krive u prostoru, koriscenjem programa 3D Grapher



Nutzerbild von Marta Mrkobrada
Odgovor: Zadatak 02 - Krive u prostoru
von Marta Mrkobrada - Dienstag, 6. Mai 2014, 21:19
 

Program: 3D Grapher

Coordinates: Spherical

a(u,v,t)=(u^2)*sin(u)
b(u,v,t)=2*v*tan(v)
R(u,v,t)=u*v
Type: Points

Coordinates: Cylindrical


a(u,v,t)=u*sin(u)
b(u,v,t)=v*cos(v)
R(u,v,t)=u*v
Type: Lines


Domain of variables:

Min U:-10; Max U:10; Steps:100

Min V:-10; Max V:10; Steps:100

 


Nutzerbild von Ivana Damljanović
Odgovor: Zadatak 02 - Krive u prostoru
von Ivana Damljanović - Dienstag, 6. Mai 2014, 21:13
 

3D Grapher



Nutzerbild von Stefan Mihailovic
Odgovor: Zadatak 02 - Krive u prostoru
von Stefan Mihailovic - Dienstag, 6. Mai 2014, 21:38
 

program: 3d grapher

X: [-10,10]
Y: [-10,10]
Z: [-10,10]
T: [0,0] (0)
Selected:
New Graph (1/1)
Cartesian
X=cos(u)*sin(v)
Y=sin(u)*cos(v)
Z=tan(t)
U: [-10,10] (20)
V: [-10,10] (20)


Nutzerbild von Djordje Tatic
Odgovor: Zadatak 02 - Krive u prostoru
von Djordje Tatic - Dienstag, 6. Mai 2014, 22:26
 

 

coridnates cartesian

a(u,v,t)= -0.1*u*sin(u)

b(u,v,t)= 0.1*v*cos(v)

R(u,v,t)= 0.1*u*0.1*v*6

Min U:-6    Max U:6 

Min V:-3    Max V:3 

Steps:60

3D Grapher


Nutzerbild von Matija Pekić
Odgovor: Zadatak 02 - Krive u prostoru
von Matija Pekić - Dienstag, 6. Mai 2014, 21:37
 

Cylindrical

a(u,v,t)= (sin(u))*7
R(u,v,t)= (sin(u))*8
Z(u,v,t)= (sin(u))*7

min U = -20 max U = 20 steps = 100
min v = -20 max v = 20 steps = 100

Cylindrical

a(u,v,t)= (sin(u))*6
R(u,v,t)= (sin(u))*4
Z(u,v,t)= (sin(u))*6

min U = -20 max U = 20 steps = 100
min v = -20 max v = 20 steps = 100

Cylindrical

a(u,v,t)= (sin(u))*5
R(u,v,t)= (sin(u))*2
Z(u,v,t)= (sin(u))*5

min U = -20 max U = 20 steps = 100
min v = -20 max v = 20 steps = 100


Nutzerbild von Jelisaveta Vukadinović
Odgovor: Zadatak 02 - Krive u prostoru
von Jelisaveta Vukadinović - Dienstag, 6. Mai 2014, 22:47
 

3D Grapher

Cylindrical

a(u,v,t)=cos(v)/sin(v)

R(u,v,t)=sin(u)*cos(u)

Z(u,v,t)=sin(t)

 

Min U: -10  Max U: 10  Steps: 12

Min V: -10  Max V: 10  Steps: 12

 


Nutzerbild von Ema Zoronjic
Odgovor: Zadatak 02 - Krive u prostoru
von Ema Zoronjic - Dienstag, 6. Mai 2014, 22:54
 

cartesian:

X(u,v,t)=(sin(u))*6

Y(u,v,t)=(sin(u))*4

Z(u,v,t)=(sin(u))*6

Min U=-20 Max U= 20 Steps 100

Min V= -20 Max V= 20 Steps100

 

cartesian 2:

X(u,v,t)=-0.1*u*sin(u)

Y(u,v,t)=0.1*v*cos(v)

Z(u,v,t)=0.1*u*0.1*v*6

Min U=-40   Max U=40   Steps 10

Min V=-40   Max V=40  Steps 10


Nutzerbild von Fedor Juric
Odgovor: Zadatak 02 - Krive u prostoru
von Fedor Juric - Dienstag, 6. Mai 2014, 22:54
 

3D Grapher

Coordinates:Spherical

a(u,v,t)=sin(u)

b(u,v,t)=sin(u)+v

R(u,v,t)=0.5*u

Min U: 2           Max U: 10         Steps:100

Min V: 1           Max V: 10          Steps:100


Nutzerbild von Hristina Cirkovic
Odgovor: Zadatak 02 - Krive u prostoru
von Hristina Cirkovic - Dienstag, 6. Mai 2014, 23:39
 

3D Grapher

1. x: 1*sin(v)*cos(v) y: 2*cos(v)*tan(v)*sin(v) z: 3*cos(v)

2. x: 2*sin(v)*cos(v) y: 3*cos(v)*tan(v)*sin(v) z: 4*cos(v)

3. x: 3*sin(v)*2*cos(v) y: 4*cos(v)*tan(v)*sin(v) z: 5*cos(v)

4. x: 4*sin(v)*cos(v) y: 4*cos(v)*tan(v)*sin(v) z: 4*cos(v)

5. x: 5*sin(v)*cos(v) y: 5*cos(v)*tan(v)*sin(v) z: 5*cos(v)

Min U: -10    Max U: 10    Steps: 20

Min V: -10    Max V: 10    Steps: 20


Nutzerbild von Marko Petrovic
Odgovor: Zadatak 02 - Krive u prostoru
von Marko Petrovic - Dienstag, 6. Mai 2014, 23:50
 

X(u,v,t): u*t+2*v

Y(u,v,t): u*v-t

Z(u,v,t): v*t + u

MinU: -10        Min V: -10

MaxU: 10        MaxV: 10

Steps: 20        Steps: 20


Nutzerbild von Dragomir Ristanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Dragomir Ristanovic - Dienstag, 6. Mai 2014, 23:52
 

Program 3D Grapher
Coordinates: Cartesian
X(u,v,t)=3.6*cos(u); Y(u,v,t)=2*sin(u); Z(u,v,t)=0.1*u^4
MinU/V: -10; MaxU/V: 10; Steps: 200
X(u,v,t)=-3.8*cos(u); Y(u,v,t)=-2*sin(u); Z(u,v,t)=-0.1*u^4
MinU/V: -10; MaxU/V: 10; Steps: 200
X(u,v,t)=4.0*cos(u); Y(u,v,t)=2*sin(u); Z(u,v,t)=0.1*u^4
MinU/V: -10; MaxU/V: 10; Steps: 200
X(u,v,t)=-4.2*cos(u); Y(u,v,t)=-2*sin(u); Z(u,v,t)=-0.1*u^4
MinU/V: -10; MaxU/V: 10; Steps: 200
Coordinates: Cylindrical
X(u,v,t)=cos(u); Y(u,v,t)=sin(u); Z(u,v,t)=0.9*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=-2.5*cos(u); Y(u,v,t)=-2.5*sin(u); Z(u,v,t)=0.9*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=2.7*cos(u); Y(u,v,t)=2.7*sin(u); Z(u,v,t)=0.9*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=-3.2*cos(u); Y(u,v,t)=-3.2*sin(u); Z(u,v,t)=-0.9*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=3.4*cos(u); Y(u,v,t)=3.4*sin(u); Z(u,v,t)=0.9*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
X(u,v,t)=-3.9*cos(u); Y(u,v,t)=-3.9*sin(u); Z(u,v,t)=0.9*u^10;
MinU/V: -8; MaxU/V: 8; Steps: 150
Coordinates: Spherical
X(u,v,t)=4*cos(u); Y(u,v,t)=4*sin(u); Z(u,v,t)=0.5*u^4;
MinU/V: -4; MaxU/V: 4; Steps: 200
X(u,v,t)=5*cos(u); Y(u,v,t)=5*sin(u); Z(u,v,t)=0.5*u^4;
MinU/V: -10; MaxU/V: 10; Steps: 20
X(u,v,t)=-6*cos(u); Y(u,v,t)=-6*sin(u); Z(u,v,t)=-0.5*u^4;
MinU/V: -10; MaxU/V: 10; Steps: 20

Postavljam slike zadnje i bocne strane



Nutzerbild von Miljana Dejanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Miljana Dejanovic - Mittwoch, 7. Mai 2014, 00:11
 

Program: 3D grapher

X=0.5*sin(v)-cos(v)*0.5; Y=v; Z=0.5*cos(v)+sin(v)*0.5

X=1*sin(v)-cos(v)*1; Y=v; Z=1*cos(v)+sin(v)*1

X=1.5*sin(v)-cos(v)*1.5; Y=v; Z=1.5*cos(v)+sin(v)*1.5

X=2*sin(v)-cos(v)*2; Y=v; Z=2*cos(v)+sin(v)*2

X=2.5*sin(v)-cos(v)*2.5; Y=v; Z=2.5*cos(v)+sin(v)*2.5

X=3*sin(v)-cos(v)*3; Y=v; Z=3*cos(v)+sin(v)*3;

X=3.5*sin(v)-cos(v)*3.5; Y=v; Z=3.5*cos(v)+sin(v)*3.5

X=4*sin(v)-cos(v)*4; Y=v; Z=4*cos(v)+sin(v)*4

 


Nutzerbild von Nina Stojanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Nina Stojanovic - Mittwoch, 7. Mai 2014, 15:01
 

3D Grapher

Cartesian

x(u,v,t)=6*sin(u)*2*cos(v)

y(u,v,t)=2*cos(u)*6*sin(u)

r(u,v,t)=2*sin(u)

MinU=-4    MaxU=4    steps:180

MinV=-2    MaxV=2    steps:180


Nutzerbild von Nikola Jankovic
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Jankovic - Samstag, 10. Mai 2014, 12:21
 
3D Math Explore:
t, -7,  8, 0,001/2*T*cos(2*T)/2*T*sin(2*T)/2*T*T+1 
t, -7,  8, 0,001/3*T*cos(T)/3*T*sin(T)/3*T
t, -7,  7, 0,001/2*t*cos(1+t)/2*t*sin(1+t)/2*t
t, -15,  15, 0,001/t*cos(1+t)/t*sin(1+t)/t
t, -9,  9, 0,001/3*t*cos(1+t)/3*t*sin(1+t)/3*t
t, -8,  8, 0,001/4*t*cos(1+t)/4*t*sin(1+t)/4*t-5
t, -10,  10, 0,001/2*t*cos(2*t)/2*t*sin(2*t)/2*T*T+3
t, -5,  0, 0,001/3*t*cos(t)/3*t*cos(2*t)/2*t*t+1
t, -8,  10, 0,001/2*t*cos(t)/3*t*cos(t)/5*t
t, -10,  10, 0,001/t*cos(t)/t*sin(T)/6*t

Nutzerbild von katarina obradinovic
Odgovor: Zadatak 02 - Krive u prostoru
von katarina obradinovic - Samstag, 10. Mai 2014, 18:13
 

3D GRAPHER

x=0,5*sin8v)-cos(u)*o,5

y=v

Z=0,5*cos(u)+sin(v)*0,5

x=1*sin(u)-cos(v)*1

y=v

z=1*cos(u)+sin(v)*1

x=1,5*sin(v)-cos(u)*1,5

y=v

z=1,5*cos(v)+sin(u)*1,5

x=2*sin(v)-cos(u)*2

y=v

z=2*cos(u)+sin(v)*2


Nutzerbild von Vanja Markovic
Odgovor: Zadatak 02 - Krive u prostoru
von Vanja Markovic - Samstag, 10. Mai 2014, 20:41
 

3d grapher


Nutzerbild von Isidora Todorovic
Odgovor: Zadatak 02 - Krive u prostoru
von Isidora Todorovic - Montag, 12. Mai 2014, 18:54
 

Program: 3d Grapher

a=sin(v)-cos(u)

R=4*sin(v)+cos(u)

z=u

Domain of variables:

min U: -20,max U: 30,Steps: 30

min V: -10,max V: 30,Steps: 30


Nutzerbild von Aleksandra Milatović
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandra Milatović - Freitag, 16. Mai 2014, 14:05
 

3D Grapher



Nutzerbild von Nevena Obradovic
Odgovor: Zadatak 02 - Krive u prostoru
von Nevena Obradovic - Sonntag, 18. Mai 2014, 01:45
 

3D Grapher

Coordinates: Spherical

a=1.2*u+sin(v)

b=cos(v)*v

R=5+sin(v)


Nutzerbild von Sonja Nikolic
Odgovor: Zadatak 02 - Krive u prostoru
von Sonja Nikolic - Sonntag, 18. Mai 2014, 01:52
 

3D Grapher

x=sin(2*u)+cos(v)

y=cos(2*u)

z=sin(2*t)+cos(3*t)


Nutzerbild von Nemanja Stankovic
Odgovor: Zadatak 02 - Krive u prostoru
von Nemanja Stankovic - Mittwoch, 21. Mai 2014, 19:31
 

3D GRAPHER

x(u,v,t)=sin(2*u)+cos(v)

y(u,v,t)=v

z(u,v,t)=u

min U=-20, max U=30, steps=60

min V=-10, max V=30, steps=60

 


Nutzerbild von Mina Esov
Odgovor: Zadatak 02 - Krive u prostoru
von Mina Esov - Donnerstag, 22. Mai 2014, 15:23
 

3DGrapher

Coordinates : Spherical

Function:

a(u,v,t) = 2*cos(u)

b(u,v,t) = cos(u)+v

r(u,v,t) = 0.5*u

 

minU = 15 , maxU = 5, steps = 15

minV = 1 , maxV = 10 , steps = 200


Nutzerbild von Irina Jemcov
Odgovor: Zadatak 02 - Krive u prostoru
von Irina Jemcov - Samstag, 24. Mai 2014, 11:43
 

Program: 3D grapher

Function: Cartesian

 

X(u,v,t): 3*v*sin(u)+2*v
Y(u,v,t): 4*cos(u)*2
Z(u,v,t): 5*v*2

MinU: -30 MaxU:30 Steps: 100
MinV:-40 MaxV: 40 Steps: 100

 


Nutzerbild von Jelena Marjanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Marjanovic - Samstag, 24. Mai 2014, 12:36
 

3D Grapher


Nutzerbild von Milica Lazarević
Odgovor: Zadatak 02 - Krive u prostoru
von Milica Lazarević - Samstag, 24. Mai 2014, 12:46
 

3D Grapher

Coordinates: Cartesian

Domain of variables:

Min U : -10 Max U : 10 Steps: 20

Min V : -10 Max V : 10 Steps: 20


Coordinates: Cartesian

X(u,v,t) = 2*v*cos(5*u)

Y(u,v,t) = 2*v*sin(4*u)

Z(u,v,t) = 5*v

 

Domain of variables:

Min U : -10 Max U : 10 Steps:20

Min V : -10 Max V : 10 Steps: 25



Nutzerbild von dea brajoviq
Odgovor: Zadatak 02 - Krive u prostoru
von dea brajoviq - Samstag, 24. Mai 2014, 21:09
 

3d math parametri fx:1.5*sin(t)*1.5 fy:0*cos(t)*t fz:t fx:sin(t) fy:cos(t)*t fz:t start:-10 end:10 step:0.1


Nutzerbild von Mladen Maslovar
Odgovor: Zadatak 02 - Krive u prostoru
von Mladen Maslovar - Sonntag, 25. Mai 2014, 21:32
 

3D grapher

 



Nutzerbild von Pavle Pavlovic
Odgovor: Zadatak 02 - Krive u prostoru
von Pavle Pavlovic - Montag, 26. Mai 2014, 19:57
 


Korišćeni program - 3D Grapher

Coordinates: Cylindrical

X (u,v,t) = 7*u
 
Y (u,v,t) = u*(sin(v))^3

Z (u,v,t) =12*v

Domain of variables:

Min U : -10 Max U : 10 Steps: 50

Min V : -10 Max V : 10 Steps: 50


Nutzerbild von vasilija stanojevic
Odgovor: Zadatak 02 - Krive u prostoru
von vasilija stanojevic - Montag, 26. Mai 2014, 20:32
 

3D Grapher



Nutzerbild von Ana-Marija Korkanović
Odgovor: Zadatak 02 - Krive u prostoru
von Ana-Marija Korkanović - Mittwoch, 28. Mai 2014, 12:30
 

Program: 3DMath Explorer


variable a start -1 end 1 step 0.05

variable b start -5 end 5 step 0.5
fx: 2*sin(b)*(1.5+sin(sin(a)))

fy: 3*cos(a)+(sin(a+3*a)*cos(a))+cos(a*6)

fz: 5*a+4*cos(a)

 

variable a start -1 end 1 step 0.1

variable b start -5 end 5 step 0.05

fx: 4*cos(cos(a))*2*sin(cos(b*3))
fy: 2*cos(5*a)
fz: 3*a+sin(7*a)

 


Nutzerbild von Sara Vasic
Odgovor: Zadatak 02 - Krive u prostoru
von Sara Vasic - Dienstag, 3. Juni 2014, 23:13
 

X= 3*v*cos(2*u)

Y=2*v*sin(u)*3

Z=2*v

Min U = -1

Min V= -1

Max U = 1

Max V = 1 

Steps = 50

Steps = 50


Nutzerbild von Jelena Radovanovic
Odgovor: Zadatak 02 - Krive u prostoru
von Jelena Radovanovic - Mittwoch, 4. Juni 2014, 10:25
 

3D Grapher

Coordinates:Spherical

a(u,v,t)=cos(u)

b(u,v,t)=cos(u)+v

R(u,v,t)=0.5*u

Min U: 2           Max U: 10         Steps:100

Min V: 1           Max V: 10          Steps:100

 

Nutzerbild von Christopher Nicette
Re: Zadatak 02 - Krive u prostoru
von Christopher Nicette - Donnerstag, 5. Juni 2014, 17:24
 

a=v*(sin(u)) ^2

r=u8 (sin(v)) ^2

z=u*5+v

min u=6

min v=6

max u= 2

max v=4

steps=100

steps=100

 


Nutzerbild von Aleksandra Ilic
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandra Ilic - Donnerstag, 5. Juni 2014, 18:55
 

02


Nutzerbild von Aleksandra Ilic
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandra Ilic - Donnerstag, 5. Juni 2014, 18:57
 

02


Nutzerbild von Aleksandra Ilic
Odgovor: Zadatak 02 - Krive u prostoru
von Aleksandra Ilic - Donnerstag, 5. Juni 2014, 19:13
 

krive u prostoru 



Nutzerbild von Emilija Isakovic
Odgovor: Zadatak 02 - Krive u prostoru
von Emilija Isakovic - Samstag, 7. Juni 2014, 09:16
 

3D Grapher

a=sin(2*u)

b=cos(u)+sin(v)

R=3*u


Nutzerbild von Marko Lukic
Odgovor: Zadatak 02 - Krive u prostoru
von Marko Lukic - Samstag, 7. Juni 2014, 12:01
 

Program: 3D Grapher



Nutzerbild von Nikola Saric
Odgovor: Zadatak 02 - Krive u prostoru
von Nikola Saric - Mittwoch, 11. Juni 2014, 16:04
 

3D Grapher



Nutzerbild von Jovana Opalic
Odgovor: Zadatak 02 - Krive u prostoru
von Jovana Opalic - Mittwoch, 18. Juni 2014, 11:28
 

3D Math Explorer

Variable: start: -3*pi  end: 3*pi

step: 0.05

Functions: Fx: x=3*cos(15*t)+sin(10*t)

                  Fy: y=3*sin(15*t)+cos(10*t)

                  Fz: z=t



Nutzerbild von Mihailo Novakovic
Odgovor: Zadatak 02 - Krive u prostoru
von Mihailo Novakovic - Samstag, 21. Juni 2014, 03:19
 

3D Grapher


Nutzerbild von Kristina Rankovic
Odgovor: Zadatak 02 - Krive u prostoru
von Kristina Rankovic - Samstag, 21. Juni 2014, 03:58
 

krive u prostoru