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In the  same chapter of  his  book Opera geometrica, Torricelli published1 two discoveries:  1) 
initial velocity of a jet from a container increases with the square root of the depth of the hole¸ 2) 
he draw the pattern of  jets from three openings at the wall of a container filled with water to 
constant level H and determined the height of the hole  with maximal range. In studying the 
pattern Torricelli used the mentioned law of initial velocities and Galileo’s law of free fall and 
projectile motion. The first Torricelli’s discovery is now well known in physics education under 
the name Torricelli’s law. But the pattern of jets from a container entered into physics literature 
along two ways, which we propose to name: “da Vinci’s way” and “Torricelli’s way”.  Along 
“da Vinci’s way” educators and textbook authors (Ref. 2 and textbooks and articles cited by 
Biser3 and Atkin4) present incorrect drawings of jets in order to incorrectly “demonstrate”the 
correct Torricelli’s law. Along “Torricelli’s way” educators point out3-11 that the shape and range 
of a jet depend on the initial velocity as well as on the time of flight of a jet.  Using algebra and 
calculus (instead of geometry, proportions and narrative used by Torricelli and Galileo) the shape 
of trajectories, their envelope, range and meeting of two jets at an arbitrary datum level, are 
determined by quadratic function and quadratic equation.   Their detailed mathematical analysis 
is presented in this paper.  
In describing how the use of water and air through time has developed our scientific 
understanding, and how to bring fluid mechanics to the general public, E. Guyon and M. 
Guyon12 observed: “Water fountains and jets are still being built and are favorite public 
attractions but, alas, are seldom connected to their scientific meaning, unlike the Torricelli 
fountain shown in Fig. 1.” 
 

1. The interplay of mathematics and physics in physics education  
    It is well known that mathematics and physics are strongly interrelated in a fruitful 
relationship.  For centuries the use of mathematics is an important part of the methodology of 
physics. For researchers on the role of mathematics in physics education the starting points are: 
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“Mathematics is the backbone of physics. It provides a language for the concise expression and 
application of physical laws and relations… As physics teachers, we share a responsibility to 
help our students develop fluency with the mathematics of physics,” wrote Bing and Redish.14 
“Mathematics is more than just a tool for working with physics problems: the discourse in 
physics is mathematical in nature.”15 
We are going to demonstrate how, the application of mathematical knowledge about quadratic 
function and quadratic equation, offers a unified view on the presentations and discussions3-

11,13,16,17, in the physics textbooks and physics education journals, about jets from Torricelli’s 
fountain. 
 

 

 
Fig. 1.Torricelli's fountain13 located in the Center for Advancement of Educators  in Šabac, Serbia, 
exemplifies well the parabolic jet pattern found by Torricelli. 
 

2. Torricelli’s law and jets’ pattern 
In  his  book Opera Geometrica, Torricelli dedicated1 one chapter to the motion of water. In this 
chapter he  studied the discharge (efflux)  of  water from holes at the wall of a cylindrical vessel. 
At Fig. 2, taken from this chapter,  ������ represents the wall of a vessel and E, D, C mark the 
posititions of holes.  Torricelli’s first goal was to determine  the velocity of efflux of a jet from a 
hole, let it be hole E. Assuming that there is no air resistence to the movement, he came to the 
conclusion1,18,19 that:  The speed of a jet at a point is equal to the speed that a single drop of 
liquid would have if it could fall freely in the vacuum from the liquid level above the orifice”.  
This is today known as Torricelli’s law5,11,18 which is written in the form:   
 

��� = �2
������                                                                 (1) 
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where g is gravitational acceleration.  
In contemporary physics courses and journals, equation (1) has been usually derived from 
Bernoulli’s equation assuming that the liquid flow is non-viscous and that air resistance is 
negligible. This equation is written at two levels, corresponding to water surface and the 
opening: 

����
� = �
������                                                                               (2) 

 
    In the next step, Torricelli states  that the fluid jet will have a parabolic shape and detemined 
the range  ������ of this jet at the level of vessel’s bottom. In his reasoning Torricelli refers1 to 
Galileo’s theory of projectile motion20, without citing any specific Galileo’s publication. We 
should have in mind that Torricelli was assistant of Galileo during last three months of Galileo’s 
life and was appointed his successor as the grand-ducal mathematician and chair of mathematics 
at the University of Pisa21.   
     Adhering to the mathematical standards of doing physics during a large part of 17th century, 
neither Galileo nor Torricelli used algebra, derivatives and integrals.   Theories of Galileo20 and 
Torricelli1were based on the results of some experiments, on geometric rules and proportions, 
discussed in Latin.18,21Torricelli’s drawing,1supporting his reasoning about the range of jets from 
a vessel, is reproduced at Fig. 2,  as well as in Refs.19. It is analogous to the drawing in Galileo’s 
unpublished manuscript22,23 about his experiments on projectile motion (see Figs 7 and 8 in Ref 
24) .In fact, Torricelli noted and used the analogy between two motions: a) the motion of a 
droplet from an orifice at the vessel and b) motion along an inclined plane continued with 
horizontal section of finite length and free fall from the end of this horizontal section, studied by 
Galileo22-24. In this way, Torricelli was able to state:  at the bottom of the vessel the range of a jet 
from an arbitrary opening E is equal twice  the length  �����. It follows that the same range has the 
jet emerging from the symmetrical opening C. This implies that the range of the central jet is 
maximal and is equal to the height of the column of water.       

 
Fig. 2. The half circle with diameter ������and jets from a vertical vessel, drawn by Torricelli.1 

AB 
denotes the surface of a vessel with holes. The level of water is kept constant at the level A.  
 
The derivation of the above Torricelli's statements, using geometry, algebra and calculus,would 
go as follows. We start with Pythagoras theorem for the triangle ΔEDI:  
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������� + ������ = �������                                                                  (3)                                                               

 
From (3) and the evident geometric relations at Fig. 2, it follows:       

 
����� =  �������� − �������������� + ������� = �������������                             (4) 

 
The time of free fall of a droplet from the opening E is given by the equation of a free fall 
 

� = �2��/
�������                                                       (5) 
 
The motion along the horizontal direction is with the constant velocity. Therefore, the range of a 
droplet at the bottom level is:  

������ = ���� = 2������������� = 2�����                                    (6) 

in agreement with Torricelli’s statement.   
 

3. The equation of a droplet trajectory  
     In order to perceive and generalize Torricelli’s derivation, by applying algebra and calculus 
used in physics education, at Fig. 3 we draw the (x,y) coordinate system and write the equation 
of a droplet trajectory using the symbols defined at this figure.  The emerging droplets are 
subjected to thegravitational field and form a continuous jet. The components of acceleration are: 

0=xа , gаy −= ,                                  (7) 
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Fig.3. In the coordinate system (x,y) trajectories of droplets from three holes at heights � = !/",  
� = !/# ,  � = $!/"  are drawn. The datum level is �% = −!. Apart from the trajectories,  a 
circle  with diameter along the edge of the vessel, tangent to water surface and ground plane is 
constructed.   It is interesting to note that the range of a  jet is equal to the length of the horizontal  
cord, passing through the emerging hole of the jet. This will be discussed in detail in section 5.  

Assuming that an element of the fluid at t = 0 is at the opening, its coordinates at the moment t 
are11:   

,)( 0tvtx x= 2/)( 2gtyty h −= ,                                    (8) 

where the initial velocity using new notation is given by:  
��� = �2
�& − '(�                                                       (9)  

By eliminating time t  from Eqs.  (8) and (9), one finds the equation of a trajectory of a droplet 
(the equation of a jet) :  

 '�)� = '( − )�/4�& − '(� .                                                              (10) 
    By analyzing the quadratic function '�)�,  for various values of the parameter '( , we are 
going to describe various physical properties of jets. At Fig. 3 are plotted three 
functions/trajectories up to the datum level, '+, which is different from the datum level '+ = 0. 

This is because we want to   emphasize the perception, prevalent among modern educators11 and 
text book writers, that the range of a jet depends on the chosen datum level, i.e. on the position of 
a tray.  As it will be shown, at and below the datum level  '+ = −& , the ranges of water jets are 
in the same order as the depths of the holes. This is the reason for our choice of the datum level 
at Fig. 3.   
We see from (10) that the shape of the trajectory is independent of the gravitational acceleration 
g. This property may be understood starting from the differential equation of the trajectory  

+-
+� =

./

.0.�

.0
= /

�                                                              (11) 

where �- and ��are y-and  x- components of velocity at point (x,y). From (8) it follows:  

�� = �)0,�- = −�2
�'( − '�                                              (12) 

Therefore:  
+-
+� = − �-12-

�32-1
                                                                       (13) 

By integrating the latter equation one finds Eq. (10).   So, we may conclude that the shape of the 
trajectory does not depend on g because it is determined by the ratio of two velocities of free fall,  
�- and  �� . �-  is the velocity of free fall from the hole to the height with coordinate y (the 

travelled distance '( − '). �� is the velocity of free fall from the water surface to the height of 
the hole (the distance & − '(). 

4. The range of a jet 
     We are interested how the range of a jet, dx ,  at the chosen level dy , depends on the height of 

the opening '(.  From (10) we find that )+��'(� is a quadratic function of    '( : 
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)+��'(� = −4'(� + 4'(�& + '+� − 4&'+                                         (14) 
 

where the interval '(450, &7 is of physical interest. Outside of this interval there is no water.  The 
function )+��'(� is positive. It is presented at Fig.  4 for five characteristic values of dy , both for 

positive as well as for negative values of '(. The portions of parabolas for   '( < 0 are dotted. 
    One notes that all parabolas intersect '(  axis at '( ≡ '(,:� = & .  This is physically 

understandable. At the top, the initial velocity is zero and therefore the range is zero, for any 
datum level.   

     The second point of intersection of a parabola depends on  '+, and it is '( ≡ '(,�� = '+ . This 

is also physically understandable. From the opening  '( = '+     time of flight to '+  is zero, 
consequently the range is zero.  

 
Fig. 4.The family of parabolas representing the function  ;%#�� � . 

 
The value of datum level '+ = −&  is of particular interest, because the maximum of the 
corresponding    parabola (14) lies on the )+��0� axis, as seen at Fig. 4. This maximum has the 
value 

)+��0� = 4&�     ,  )+�0� = 2&                                     (15) 
 
For levels '+ < −& the maximum of the parabola lies in the interval '(<0, where there is no 
water. Therefore, at the levels   '+ ≤ −& , the range of a jet from the bottom is always maximal. 

Maximal range is determined by the intersection of the parabola with the )+��0�   axis, i.e. 

)+,=>� = )+�0� = 2�−&'+, '+ ≤ −& .                             (16) 
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More complete analysis of the graphs at Fig. 4 is presented in the Online Appendix.25 
 
5. Jets’ ranges and Torricelli’s half circles for arbitrary datum level 
     Using   the quadratic function in Eq. (14), we may generalize Torricelli’s method for the 
determination of jet’s range to be applicable for any datum level '+ . For this sake let us rewrite 
Eq. (14) in the form:  

222

222







 −
=







 +
−+







 dd
h

d yHyH
y

x

                                      
(17) 

 
This is the equation of  a circle, where 2/dx  and  hy are the coordinates of  points lying along   a  

circle. The radius and center of the circle are:   
2

dyH
r

−
=  and C= 







 +

2
,0 dyH

, respectively. At 

Figs. 3 and 5 are drawn trajectories and half circles for five  values of  '+   chosen in five 
characteristic intervals: '+ > 0 ,  '+ = 0 , −& < '+ < 0, '+ = −H,   '+ < −&.  
 
 

a) 
 

b) 
 

c) 
 

d) 
 
 
Fig.5. Generalization of Torricelli's scheme from Fig. 2  to additional datum  levels  �%: a) �% =
!/" ,  b) �% = A  , c)  �% = − !/#  , d)  �% = − $!/# .  The half-circles are in  the 
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( ;%/#, � �  coordinate system. The values: �% = !/"   , �% = − !/# and  �% = − $!/# 
belong to three characteristic intervals of  �%, as explained in the text. The importance of 
values �% = A   and  �% = −! (Fig. 3) is also explained above.  
 
The set of horizontal lines drawn at Fig 5 from the '(  line to any chosen curve, represents the 
generalization of the set of three horizontal lines at Torricelli’s Fig. 2.  For 0 ≤ '+ < & , for 
each value of '( > '+  there exists the height & − '(  whose line has the same length. Jets 
emerging from these two heights meet at the same point at the datum level.  The length of the 

line from the height  
32-.

�   is equal to the radius of the circle and corresponds to the maximal 

range at this datum level.  For   '+ = − 3
�  (as well as for any '+4�−&, 0� ),  near the height   

32-.
�    

there exist pairs of  heights  with the same length of lines (same range). But further from the 

height  
32-.

�    there are no such pairs of heights. For '+ = −2&�as well as for any '+ ≤ −&)   

there are no pairs of heights with the same lengths of lines. With decreasing height of a hole, the 
length of the line from '( to the portion of a circle increases. This implies that if we put a tray at 
a level  '+ ≤ − & we would observe that jets are in the same order as the depths of the holes.  
     The dependence of range on the height of a hole at various datum levels has been recently 
investigated and graphically presented by Lopac11 in more general case with different bottle 
shapes: barrel, bucket corrugated vase.   
 
6. Summary and conclusions 
    The usefulness of Torricelli’s fountain in teaching applicability in physics of mathematical 
properties of the quadratic function and of the roots of the quadratic equation is demonstrated in 
this paper including the Online Appendix.25  By paying attention to this aspect of Torricelli’s 
fountain, we expect that teachers would contribute to the decrease of erroneous drawings of 
water jets in the textbooks and journals. In this way, the inspiring argumentation of Budd and 
Sangwin26 about 101 uses of a quadratic equation, would be enriched.      
It is easy to make photos of real jets, as were presented by Atkin4, Sliško and Cruz7,Sliško8, 
Planininšičet al.,9   Božić13, Lopac11. The shapes of trajectories and other features found in these 
real demonstrations show good agreement with shapes and ranges evaluated from Eqs. (10) and 
(14) and their mathematical analysis. Therefore, Torricelli’s fountain should be used to 
demonstrate the dependence of the shape and range of jets on two factors: 1) increase of pressure 
with depth of a fluid and corresponding initial velocity (Torricelli’s law) and 2) the time of flight 
of a droplet from the hole to the datum level. With increasing time of flight, the first factor 

becomes dominant. So,below '+ = −& the ranges of water jets are in the same order as the 
depths of the holes. Torricelli’s fountain is an ideal apparatus to show and visualize the interplay 
of physics and mathematics. This interplay may be exploited for integrating physics and 
mathematics teaching and learning.  
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Visualizing properties of a quadratic function using Torricelli’s 
fountain  
Online Appendix 
 
The pattern of water jets from  holes  in the cylindrical vessel has been the subject of scientific 
inquiry and educational dispute since the famous (incorrect) drawing8,9 made by  Leonardo da 
Vinci in XV century.  The correct pattern, from the central hole and two holes symmetrically  
positioned with respect to the center, was  firstly found  theoretically by Torricelli1 in 1644.   
Afterwards it was presented in textbooks and encyclopedias.  The apparatus was recently 
named13 “Torricelli’s fountain”. By the end of XIX century, Torricelli’s theoretical pattern, was 
almost perfectly replicated experimentally by mercury jets. However, by the beginning of the 
XX century, an erroneous pattern of three jets2, aimed to illustrate the law of the increase of 
pressure with depth in a liquid, started its life in physics and science textbooks (see for example 
the textbooks mentioned by Biser3 and Atkin4).   Consequently, in educational journals started to 
appear articles3-11 denouncing the error and indicating which pattern is closer to the real behavior 
of jets. Despite this, publications with erroneous drawing and argumentation   continue to 
appear,16,17,OA1-OA3 as Lopac11 pointed our recently in this journal. 
   In this paper, including the Online Appendix, we  demonstrate in detail the usefulness of 
Torricelli’s fountain in teaching applicability in physics of mathematical properties of the 
quadratic function and of the roots of the quadratic equation. More generally, we show that 
Torricelli’s fountain is an ideal apparatus to visualize properties of the quadratic function and 
quadratic equation, as well as the interplay of physics and mathematics. This interplay may be 
exploited in integrating physics and mathematics teaching and learning. The necessity for this 
integration has been widely discussed among physics and mathematics educators.  
 

A1. The jet with maximal range at  a  given level  
Using quadratic function (14) and graphs at Fig. 4, let us determine the height of the opening for 
which the jet range at the chosen datum level (position of a tray) is maximal. The   maximum of 
quadratic function (14) is at:                                                                                  

2
d

h

yH
y

+
=

                                                       
(OA.1) 

The corresponding maximal value is: 

)+,=>�� B3C-.
� D = �& − '+�� ⇒ )+,=>� B3C-.

� D = & − '+                       (OA.2) 
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Taking into account that heights of the holes are in the interval      , this maximum determines the 

maximal range only for   & ≥ 3C-.
� ≥ 0, i.e. & ≥ '+ ≥ −& .  

It is instructive to check  that the points of maxima and the corresponding maximal values at the 
parabolas presented at Fig. 4 agree with the general formula (OA.1) and (OA.2). The maxima at 
the levels   '+ = 0   and   '+ = −& are of particular interest. For '+= 0, maximal range 
)+,=>��&/2� = & has the jet from '( = &/2. For '+ = −& maximal range )+,=>��0� = 2&  
has the jet from the opening at '( = 0 . 
     For levels '+ < −& the maximum of the function )+��'(� lies in the region '( < −0 and,   in 
the region  '( > 0 it is a  decreasing function. Therefore, maximal jet’s range is determined by 

the intersection of the parabola with the  '( = 0  axis, )+,=>� = )+�0� = 2�−&'+ .  

Consequently, at   the levels   '+ ≤ −& , the range of a jet from the bottom is always maximal. 
 

A2. Meeting of two jets  
From graphs at Fig.  4 we see that there are three characteristic  intervals of values of  
'+  : '+ ∈ 50, &�  , '+ ∈ 5−&, 0�  , '+ ∈ �−∝, −&�  . The intervals differ by the number of 
intersections of a horizontal dashed line, drawn below the maximum, with a parabola. In the 
interval'+ ∈ 50, &� there are always two intersections.  In the interval 5−&, 0) there may be one 
or two intersections. In the interval �−∝, −&�   there exists only one intersection.  These 
intersections are determined from Eq.  (14) by writing it as a quadratic equation for '(, for given 
)+  and  '+ : 
 

'(� − '(�& + '+� + &'+ + �.�
I = 0                               (OA.3) 

By determining the roots of  Eq. (OA.3) we can determine the heights from which two jets reach 
the same point at the given level.  

'(:,(� = 3C-.±K�32-.��2�.�

�                                      (OA.4) 

As usual, these roots satisfy Vieta’s formula: 

'(: + '(� = & + '+                                 (OA.5)                                                                                                                            

Of physical interest are  roots which satisfy   0 ≤ '(L < & . One may analyze  algebraically the   
roots (OA.4) to find in which intervals of '+  and )+ lie positive roots. Another way is to 
contemplate  graphs at Fig.  4. Let us start with graphs for levels 0 ≤ '+ < &. We see that for 
each point in the interval )+ ∈ �0, )+,=>�� there exists two heights '( from which the jets meet at 

the level '+. In the case of levels −& ≤ '+ < 0 there are two characteristic intervals of )+. To 

each point in the interval )+ ∈ M2�−&'+, & − '+N  arrive two jets from two  heights. To points 
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in the interval  )+ ∈ �0,2�−&'+� only one jet arrives. At a level satisfying '+ < −&, single jet 

arrives to each point in the interval )+ ∈ �0, &−'+�. 

    At Fig. OA1 is presented the set of trajectories reaching the level  '+ = −&/2. One clearly 
sees the interval of points to which arrive two jets. The jet having maximal range is the limiting 
jet of these pairs of jets.  

 

Fig. OA1. Trajectories from various heights reaching level   �% = −!/# . The jet from  � = !/"  
has maximal range and it is theright limiting point  of the interval of points to which  two jets 
arrive. The left limiting point  of this interval, ;%,O, is determined by the intersection of the parabola 

at Fig. 4 with � = A axis, so that    ;%.O = !√# . 

    At Fig. OA2 is presented the set of trajectories reaching the level '+ = −3&/2 .  To all points 
at this level arrive only  one jet. The jet having maximal range starts at the bottom of the vessel  
('( = 0�. 
    We may now rewrite Eq. (OA.5) to determine the level at which two jets from given two  
heights intersect:  

'+ = '(: + '(� − &                                     (OA.6) 
If we consider the depths of openings, '(LS = & − '(L , instead of heights  of openings,  '(L   ,   
the latter relation reads:  

'+S = '(:S + '(�S                                          (OA.7)  
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where '+S = & − '+ . In other words, the depth at which two  jets intersect is equal to the sum of 
depths at which are the openings.  

 

Fig. OA2.Trajectories reaching the level �% = −$!/#.  At this level there are no points to which 
two jets arrive. The jet from the bottom reaches the greatest distance.  

 
A3. Envelope of the family of trajectories  
     Envelope of a family of curves/trajectories provide additional insight and information about 
their properties, as shown by Baće et al.OA4, Heppler and EleuterioOA5  and other authors. The 
first example of an envelope curve is due to Torricelli, who showed that a family of ballistic 
trajectories characterized by having the same initial speed are all tangent at some point to one 
and the same parabola.OA5 Torricelli named it “parabola di sicurezza” but it got also the name 
Torricelli’s parabola.OA5 
     Trajectories (parabolas) from Torricelli’s tube are defined by Eq. (10). They  start at different 
heights and are characterized by different initial velocities. In order to  determine the envelope of 
this family  let us rewrite Eq.  (10) in the form  

2)(4)(4 xyHyyHy hhh −−=− ,                               (OA.8)          

and let us introduce the function  

04444),,( 22
=++−−≡ xyHyyyyHyyxf hhhh                               (OA.9)   
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The envelope is a curve which is tangent to all curves of the given family. Consequently, it is 
determined by the following equation:   

0844 =+−−=
∂

∂
h

h

yHy
y

f

                                  (OA.10)  

and by Eq. (OA.8). From (OA.10) it follows: 

2

Hy
yh

+
=

                                  (OA.11) 
 

By substituting (OA.11) into (OA.9) we find the relation:  

02 222
=+−− xHyyH                                  (OA.12) 

which leads to: 
22)( xyH =−                            (OA.13)    

From the latter relation the equation of  the envelope follows:   
xHy −=                                    (OA.14) 

We see that the envelope of trajectories from Torricelli’s tank is a straight line. At Fig. OA3 is 
presented the family of trajectories together with the envelope.  
 

 
 

Fig.OA3. The family of trajectories of jets and their envelope. 
 
    The equation of the envelope of trajectories may be found also by the method, which does not 
use the calculus.  This method, proposed by Baćeet al.OA4 , is based on the following properties 
of the family of trajectories and of the envelope:  a) no trajectory on any target plane reaches a 
range greater  than the “range” of the envelope;  b) the intersection of the envelope and the target 
plane gives the maximal range which can be reached by only one trajectory from the family.  
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     In order to apply the Baćeet al. method, let us analyze our Eq. (OA.4) which gives two 
solutions (heights) from which jets arrive to the chosen point (xd,yd). These two solutions are 
equal if:  
 

�& − '+�� − )+� = 0                                       (OA.15)                                        
i.e. if the following equation is satisfied: 
                                                                                             & − '+ = )+                                                    (OA.16) 

Evidently, the latter equation is the same as Eq. (OA.14) of the envelope, derived above.      
      By eliminating x from (OA.14) and (OA.9)   we may find depth   'T   where the envelope 
touches the jet from   '(   .   

 �& − ' T�� = 4�& − '(��'( − 'T�                          (OA.17) 
It is easy to check that the solution of (OA.17) is the following one: 

'T = 2'( − &                                                  (OA.18) 
It is useful to rewrite Eq. (OA.18) using depths (primed quantities) instead of levels. Then, it 
reads:  

'′T = 2'′(                                  (OA.19)   
i.e.  the depth of touch is equal to twice the depth of the opening.  
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